Priestley duality for order-preserving maps into distributive lattices

被引:3
|
作者
Farley, JD [1 ]
机构
[1] UNIV OXFORD,INST MATH,OXFORD OX1 3LB,ENGLAND
关键词
function lattice; ideal lattice; semilattice; distributive lattice; Priestley duality; order-preserving map; bitopological space; Stone-Cech compactification;
D O I
10.1007/BF00383968
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The category of bounded distributive lattices with order-preserving maps is shown to be dually equivalent to the category of Priestley spaces with Priestley multirelations. The Priestley dual space of the ideal lattice L(sigma) of a bounded distributive lattice L is described in terms of the dual space of L. A variant of the Nachbin-Stone-Cech compactification is developed for bitopological and ordered spaces. Let X be a poset and Y an ordered space; X(Y) denotes the poset of continuous order-preserving maps from Y to X with the discrete topology. The Priestley dual of L(P) is determined, where P is a poset and L a bounded distributive lattice.
引用
收藏
页码:65 / 98
页数:34
相关论文
共 50 条
  • [21] TENSOR PRODUCTS OF DISTRIBUTIVE LATTICES AND THEIR PRIESTLEY DUALS
    SCHMID, J
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1980, 35 (3-4): : 387 - 392
  • [22] Order-Preserving Incomplete Suffix Trees and Order-Preserving Indexes
    Crochemore, Maxime
    Iliopoulos, Costas S.
    Kociumaka, Tomasz
    Kubica, Marcin
    Langiu, Alessio
    Pissis, Solon P.
    Radoszewski, Jakub
    Rytter, Wojciech
    Walen, Tomasz
    STRING PROCESSING AND INFORMATION RETRIEVAL (SPIRE 2013), 2013, 8214 : 84 - 95
  • [23] THE DUALITY OF DISTRIBUTIVE CONTINUOUS LATTICES
    BANASCHEWSKI, B
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (02): : 385 - 394
  • [24] Priestley Style Duality for Distributive Meet-semilattices
    Bezhanishvili, Guram
    Jansana, Ramon
    STUDIA LOGICA, 2011, 98 (1-2) : 83 - 122
  • [25] Priestley Style Duality for Distributive Meet-semilattices
    Guram Bezhanishvili
    Ramon Jansana
    Studia Logica, 2011, 98 : 83 - 122
  • [26] ON WEAKLY GRADED POSETS OF ORDER-PRESERVING MAPS UNDER THE NATURAL PARTIAL ORDER
    Jitjankarn, Phichet
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (02): : 347 - 358
  • [27] On order-preserving representations
    Ben Simon, G.
    Burger, M.
    Hartnick, T.
    Iozzi, A.
    Wienhard, A.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 94 : 525 - 544
  • [28] ORDER-PRESERVING ASSIGNMENTS
    PADBERG, M
    ALEVRAS, D
    NAVAL RESEARCH LOGISTICS, 1994, 41 (03) : 395 - 421
  • [29] Order-preserving matching
    Kim, Jinil
    Eades, Peter
    Fleischer, Rudolf
    Hong, Seok-Hee
    Iliopoulos, Costas S.
    Park, Kunsoo
    Puglisi, Simon J.
    Tokuyama, Takeshi
    THEORETICAL COMPUTER SCIENCE, 2014, 525 : 68 - 79
  • [30] Free modal lattices via priestley duality
    Wegener C.B.
    Studia Logica, 2002, 70 (3) : 339 - 352