Preparation and electrochemical properties of Ca-doped Li4Ti5O12 as anode materials in lithium-ion battery

被引:153
|
作者
Zhang, Qianyu [1 ]
Zhang, Chengli [1 ]
Li, Bo [1 ]
Kang, Shifei [1 ]
Li, Xi [1 ]
Wang, Yangang [2 ]
机构
[1] Fudan Univ, Dept Environm Sci & Engn, Shanghai 200433, Peoples R China
[2] Shanghai Univ Sci & Technol, Sch Environm & Architecture, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lithium titanate; Anode material; Doping; Lithium-ion battery; CARBON-COATED LI4TI5O12; RATE CAPABILITY; CYCLING PERFORMANCE; NANOTUBES; COMPOSITE; ELECTRODE; TITANATE; DEPOSITION;
D O I
10.1016/j.electacta.2013.03.006
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Ca-doped lithium titanates with the formula of Li4-xCaxTi5O12 (x= 0, 0.05, 0.1, 0.15, 0.2) were synthesized as anode materials by a simple solid-state reaction in an air atmosphere. The phase structure, morphologies and electrochemical properties of the prepared powders were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and cyclic voltammetry (CV), respectively. XRD revealed that the Ca-doping caused no change on the phase structure and highly crystalline Li4-xCaxTi5O12 (0 <= x <= 0.2) powders without any impurity were obtained. SEM images sfiowed that all samples had similar particulate morphologies and the particle size distribution was in the range of 1-2 mu m. It was observed that Ca-doped lithium titanates employed as the anode materials of lithium-ion batteries delivered excellent electrochemical performances, and sample Li3.9Ca0.1Ti5O12 exhibited a higher specific capacity, better cycling performance and rate capability than other samples. The Li3.9Ca0.1Ti5O12 material showed discharge capacities of 162.4 mAh g(-1), 148.8 mAh g(-1) and 138.7 mAh g(-1) after 100 cycles at 1 C, 5C and 10 C charge-discharge rates, respectively. Electrochemical impedance spectroscopy (EIS) revealed that the Li3.9Ca0.1Ti5O12 electrode exhibited the highest electronic conductivity and fastest lithium-ion diffusivity, which indicated that this novel Li3.9Ca0.1Ti5O12 material was promising as a high-rate anode material for the lithium-ion batteries. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:146 / 152
页数:7
相关论文
共 50 条
  • [31] Characterizations and electrochemical performance of pure and metal-doped Li4Ti5O12 for anode materials of lithium-ion batteries
    Jeong, Euh Duck
    Han, Hyun Ju
    Jung, Ok Sang
    Ha, Myoung Gyu
    Doh, Chil Hoon
    Hwang, Min Ji
    Yang, Ho-Soon
    Hong, K. S.
    MATERIALS RESEARCH BULLETIN, 2012, 47 (10) : 2847 - 2850
  • [32] Electrochemical performance of single Li4Ti5O12 particle for lithium ion battery anode
    Tojo, Tomohiro
    Kawashiri, Shuhei
    Tsuda, Takao
    Kadowaki, Mizuki
    Inada, Ryoji
    Sakurai, Yoji
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 836 : 24 - 29
  • [33] Preparation and electrochemical performance of Li4-xMgxTi5O12 as anode materials for lithium-ion battery
    Cheng, Qi
    Tang, Shun
    Liu, Chang
    Lan, Qian
    Zhao, Jinxing
    Liang, Jiyuan
    Yan, Ji
    Liu, Zuqi
    Cao, Yuan-Cheng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 722 : 229 - 234
  • [34] Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery
    Huang, Shahua
    Wen, Zhaoyin
    Zhang, Jingchao
    Gu, Zhonghua
    Xu, Xiaohe
    SOLID STATE IONICS, 2006, 177 (9-10) : 851 - 855
  • [35] Structural and thermodynamic stability of Li4Ti5O12 anode material for lithium-ion battery
    Yi, Ting-Feng
    Xie, Ying
    Zhu, Yan-Rong
    Zhu, Rong-Sun
    Shen, Haoyu
    JOURNAL OF POWER SOURCES, 2013, 222 : 448 - 454
  • [36] Ru-doped Li4Ti5O12 anode materials for high rate lithium-ion batteries
    Wang, Wei
    Wang, Hualing
    Wang, Shubo
    Hu, Yuejiao
    Tian, Qixiang
    Jiao, Shuqiang
    JOURNAL OF POWER SOURCES, 2013, 228 : 244 - 249
  • [37] Preparation and electrochemical properties of Li4Ti5O12/Ti4O7 composite for lithium-ion batteries
    Xiaoyan Zhang
    Xiaoxi Zhong
    Wen Xu
    Xing Li
    Wanying Liu
    Yuanhua Lin
    Ionics, 2018, 24 : 379 - 384
  • [38] Preparation and electrochemical properties of Li4Ti5O12/Ti4O7 composite for lithium-ion batteries
    Zhang, Xiaoyan
    Zhong, Xiaoxi
    Xu, Wen
    Li, Xing
    Liu, Wanying
    Lin, Yuanhua
    IONICS, 2018, 24 (02) : 379 - 384
  • [39] Preparation of Li4Ti5O12 nanosheetsicarbon nanotubes composites and application of anode materials for lithium-ion batteries
    Zhang, Pengfei
    Chen, Ming
    Shen, Xiao
    Wu, Qianhui
    Zhang, Xiue
    Huan, Long
    Diao, Guowang
    ELECTROCHIMICA ACTA, 2016, 204 : 92 - 99
  • [40] Preparation and electrochemical properties of nanorods and nanosheets structural Li4Ti5O12 as anode for lithium ion batteries
    Jingrui Kang
    Guixia Dong
    Zongfeng Li
    Lei Li
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 12615 - 12623