Preparation and electrochemical properties of Ca-doped Li4Ti5O12 as anode materials in lithium-ion battery

被引:153
|
作者
Zhang, Qianyu [1 ]
Zhang, Chengli [1 ]
Li, Bo [1 ]
Kang, Shifei [1 ]
Li, Xi [1 ]
Wang, Yangang [2 ]
机构
[1] Fudan Univ, Dept Environm Sci & Engn, Shanghai 200433, Peoples R China
[2] Shanghai Univ Sci & Technol, Sch Environm & Architecture, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lithium titanate; Anode material; Doping; Lithium-ion battery; CARBON-COATED LI4TI5O12; RATE CAPABILITY; CYCLING PERFORMANCE; NANOTUBES; COMPOSITE; ELECTRODE; TITANATE; DEPOSITION;
D O I
10.1016/j.electacta.2013.03.006
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Ca-doped lithium titanates with the formula of Li4-xCaxTi5O12 (x= 0, 0.05, 0.1, 0.15, 0.2) were synthesized as anode materials by a simple solid-state reaction in an air atmosphere. The phase structure, morphologies and electrochemical properties of the prepared powders were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and cyclic voltammetry (CV), respectively. XRD revealed that the Ca-doping caused no change on the phase structure and highly crystalline Li4-xCaxTi5O12 (0 <= x <= 0.2) powders without any impurity were obtained. SEM images sfiowed that all samples had similar particulate morphologies and the particle size distribution was in the range of 1-2 mu m. It was observed that Ca-doped lithium titanates employed as the anode materials of lithium-ion batteries delivered excellent electrochemical performances, and sample Li3.9Ca0.1Ti5O12 exhibited a higher specific capacity, better cycling performance and rate capability than other samples. The Li3.9Ca0.1Ti5O12 material showed discharge capacities of 162.4 mAh g(-1), 148.8 mAh g(-1) and 138.7 mAh g(-1) after 100 cycles at 1 C, 5C and 10 C charge-discharge rates, respectively. Electrochemical impedance spectroscopy (EIS) revealed that the Li3.9Ca0.1Ti5O12 electrode exhibited the highest electronic conductivity and fastest lithium-ion diffusivity, which indicated that this novel Li3.9Ca0.1Ti5O12 material was promising as a high-rate anode material for the lithium-ion batteries. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:146 / 152
页数:7
相关论文
共 50 条
  • [21] Preparation and electrochemical performance of P5+-doped Li4Ti5O12 as anode material for lithium-ion batteries
    Yan, Guilin
    Xu, Xinru
    Zhang, Wentao
    Liu, Zhendong
    Liu, Wei
    NANOTECHNOLOGY, 2020, 31 (20)
  • [22] The evolution in electrochemical performance of Li4-XCaxTi5O12 (Ca doped Li4Ti5O12) as anode materials for lithium ion batteries
    Zhang, Ying
    Li, Jun
    Zhang, Fan
    Li, Xiao
    Yuan, Baige
    Xia, Manman
    Zhao, Peng
    Lei, Ruyan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 616
  • [23] Structure and electrochemical properties of Sm-doped Li4Ti5O12 as anode material for lithium-ion batteries
    Li, Zhanyu
    Li, Jianling
    Zhao, Yuguang
    Yang, Kai
    Gao, Fei
    Li, Xiao
    RSC ADVANCES, 2016, 6 (19): : 15492 - 15500
  • [24] Preparation and electrochemical properties of carbon-coated Li4Ti5O12 anode materials for Lithium Ion Batteries
    Zhang, Er-Wei
    Zhang, Hai-Lang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (12): : 12380 - 12390
  • [25] Preparation of Li4Ti5O12 submicrospheres and their application as anode materials of rechargeable lithium-ion batteries
    Zhang Ai
    Zheng ZongMin
    Cheng FangYi
    Tao ZhanLiang
    Chen Jun
    SCIENCE CHINA-CHEMISTRY, 2011, 54 (06) : 936 - 940
  • [26] Preparation of Li4Ti5O12 submicrospheres and their application as anode materials of rechargeable lithium-ion batteries
    ZHANG Ai
    College of Chemistry
    Science China(Chemistry), 2011, (06) : 936 - 940
  • [27] Preparation of Li4Ti5O12 submicrospheres and their application as anode materials of rechargeable lithium-ion batteries
    Ai Zhang
    ZongMin Zheng
    FangYi Cheng
    ZhanLiang Tao
    Jun Chen
    Science China Chemistry, 2011, 54 : 936 - 940
  • [28] Impact of titanium precursors on formation and electrochemical properties of Li4Ti5O12 anode materials for lithium-ion batteries
    Chung-Yuan Kang
    Marcin Krajewski
    Jeng-Yu Lin
    Journal of Solid State Electrochemistry, 2021, 25 : 575 - 582
  • [29] Advanced electrochemical properties of Mo-doped Li4Ti5O12 anode material for power lithium ion battery
    Yi, Ting-Feng
    Xie, Ying
    Jiang, Li-Juan
    Shu, Jie
    Yue, Cai-Bo
    Zhou, An-Na
    Ye, Ming-Fu
    RSC ADVANCES, 2012, 2 (08) : 3541 - 3547
  • [30] Advances in spinet Li4Ti5O12 anode materials for lithium-ion batteries
    Sun, Xiangcheng
    Radovanovic, Pavle V.
    Cui, Bo
    NEW JOURNAL OF CHEMISTRY, 2015, 39 (01) : 38 - 63