Preparation and electrochemical properties of Ca-doped Li4Ti5O12 as anode materials in lithium-ion battery

被引:153
|
作者
Zhang, Qianyu [1 ]
Zhang, Chengli [1 ]
Li, Bo [1 ]
Kang, Shifei [1 ]
Li, Xi [1 ]
Wang, Yangang [2 ]
机构
[1] Fudan Univ, Dept Environm Sci & Engn, Shanghai 200433, Peoples R China
[2] Shanghai Univ Sci & Technol, Sch Environm & Architecture, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lithium titanate; Anode material; Doping; Lithium-ion battery; CARBON-COATED LI4TI5O12; RATE CAPABILITY; CYCLING PERFORMANCE; NANOTUBES; COMPOSITE; ELECTRODE; TITANATE; DEPOSITION;
D O I
10.1016/j.electacta.2013.03.006
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Ca-doped lithium titanates with the formula of Li4-xCaxTi5O12 (x= 0, 0.05, 0.1, 0.15, 0.2) were synthesized as anode materials by a simple solid-state reaction in an air atmosphere. The phase structure, morphologies and electrochemical properties of the prepared powders were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and cyclic voltammetry (CV), respectively. XRD revealed that the Ca-doping caused no change on the phase structure and highly crystalline Li4-xCaxTi5O12 (0 <= x <= 0.2) powders without any impurity were obtained. SEM images sfiowed that all samples had similar particulate morphologies and the particle size distribution was in the range of 1-2 mu m. It was observed that Ca-doped lithium titanates employed as the anode materials of lithium-ion batteries delivered excellent electrochemical performances, and sample Li3.9Ca0.1Ti5O12 exhibited a higher specific capacity, better cycling performance and rate capability than other samples. The Li3.9Ca0.1Ti5O12 material showed discharge capacities of 162.4 mAh g(-1), 148.8 mAh g(-1) and 138.7 mAh g(-1) after 100 cycles at 1 C, 5C and 10 C charge-discharge rates, respectively. Electrochemical impedance spectroscopy (EIS) revealed that the Li3.9Ca0.1Ti5O12 electrode exhibited the highest electronic conductivity and fastest lithium-ion diffusivity, which indicated that this novel Li3.9Ca0.1Ti5O12 material was promising as a high-rate anode material for the lithium-ion batteries. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:146 / 152
页数:7
相关论文
共 50 条
  • [1] Preparation and Electrochemical Properties of Li4Ti5O12 Anode for Lithium Ion Battery
    Zhao Yaomin
    Liu Guoqun
    Jiang Zhiyu
    RARE METAL MATERIALS AND ENGINEERING, 2009, 38 (06) : 1076 - 1079
  • [2] Structure and electrochemical properties of Sc3+-doped Li4Ti5O12 as anode materials for lithium-ion battery
    Yang, Shuang-Yuan
    Yuan, Jing
    Zhu, Yan-Rong
    Yi, Ting-Feng
    Xie, Ying
    CERAMICS INTERNATIONAL, 2015, 41 (05) : 7073 - 7079
  • [3] Sol–gel preparation and electrochemical properties of La-doped Li4Ti5O12 anode material for lithium-ion battery
    Caixia Qiu
    Zhongzhi Yuan
    Ling Liu
    Neng Ye
    Jincheng Liu
    Journal of Solid State Electrochemistry, 2013, 17 : 841 - 847
  • [4] Structure and Electrochemical Properties of Spinel Li4Ti5O12 Nanocomposites as Anode for Lithium-Ion Battery
    Sun, Xiangcheng
    Hegde, Manu
    Zhang, Yuefei
    He, Min
    Gu, Lin
    Wang, Yongqing
    Shu, Jie
    Radovanovic, Pavle V.
    Cui, Bo
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2014, 9 (04): : 1583 - 1596
  • [5] Effects of a dopant on the electrochemical properties of Li4Ti5O12 as a lithium-ion battery anode material
    Park, Jung Soo
    Baek, Seong-Ho
    Jeong, Yong-Il
    Noh, Bum-Young
    Kim, Jae Hyun
    JOURNAL OF POWER SOURCES, 2013, 244 : 527 - 531
  • [6] Synthesis and electrochemical characteristics of flower-like Ca-doped Li4Ti5O12 as anode material for lithium-ion batteries
    Ma, Yuhao
    Wang, Yangyang
    Yan, Guilin
    Yuan, Fei
    Zhang, Wentao
    POWDER TECHNOLOGY, 2022, 407
  • [7] Preparation of Li4Ti5O12 Nanorods as Anode Materials for Lithium-Ion Batteries
    Li, Y.
    Pan, G. L.
    Liu, J. W.
    Gao, X. P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (07) : A495 - A499
  • [8] Sol-gel preparation and electrochemical properties of La-doped Li4Ti5O12 anode material for lithium-ion battery
    Qiu, Caixia
    Yuan, Zhongzhi
    Liu, Ling
    Ye, Neng
    Liu, Jincheng
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (03) : 841 - 847
  • [9] Preparation and Electrochemical Performance of Mg-doped Li4Ti5O12 Nanoparticles as Anode Materials for Lithium-Ion Batteries
    Li, Fuyun
    Zeng, Min
    Li, Jing
    Xu, Hui
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (12): : 10445 - 10453
  • [10] Synthesis and electrochemical properties of spinel Li4Ti5O12−xClx anode materials for lithium-ion batteries
    Yudai Huang
    Yanling Qi
    Dianzeng Jia
    Xingchao Wang
    Zaiping Guo
    Won Il Cho
    Journal of Solid State Electrochemistry, 2012, 16 : 2011 - 2016