On Lp multiple orthogonal polynomials

被引:2
|
作者
Kroo, Andras [1 ,2 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
[2] Budapest Univ Technol & Econ, Dept Anal, Budapest, Hungary
关键词
Multiple orthogonal polynomials; Multiple extremal polynomials; L-p norm; Weak Chebyshev spaces;
D O I
10.1016/j.jmaa.2013.05.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Denote by P-n the space of real algebraic polynomials of degree at most n - 1 and consider a multi-index n := (n(1), ... , n(d)) is an element of N-d, d >= 1, of length vertical bar n vertical bar := n(1) + ... + n(d). Then given the nonnegative weight functions w(j) is an element of L-infinity [a, b], 1 <= j <= d, the polynomial Q is an element of P vertical bar n vertical bar+1 \ {0} is called a multiple orthogonal polynomial relative to n and the weights w(j), 1 <= j <= d, if integral([a,b]) wj(x)x(k)Q(x)d mu = 0, 0 <= k <= n(j) - 1, 1 <= j <= d. The above orthogonality relations are equivalent to the conditions for the L-2 multiple best approximation parallel to Q parallel to(L2(wj)) <= parallel to Q - g parallel to(L2(wj)), for all g is an element of P-nj, 1 <= j <= d. The existence of multiple L-2 orthogonal polynomials easily follows from the solvability of the above linear system. The analogous question for the multiple best L-p approximation, i.e., the existence of an extremal polynomial Q(p) is an element of P vertical bar n vertical bar+1 \ (0) satisfying parallel to Q(p)parallel to(Lp(wj)) <= parallel to Q(p) - g parallel to(Lp(wj)), for all g is an element of P-nj, 1 <= j <= d, poses a more difficult nonlinear problem when 1 <= p <= infinity, p not equal 2. In this paper we shall address this question and verify the existence and uniqueness of multiple L-p orthogonal polynomials under proper conditions. (C) 2013 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:147 / 156
页数:10
相关论文
共 50 条
  • [31] Multiple Orthogonal Polynomials in Random Matrix Theory
    Kuijlaars, Arno B. J.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 1417 - 1432
  • [32] Multiple orthogonal polynomials associated with Macdonald functions
    Van Assche, W
    Yakubovich, SB
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2000, 9 (03) : 229 - 244
  • [33] Some recurrence relations of multiple orthogonal polynomials
    Lee, DW
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (04) : 673 - 693
  • [34] On multiple orthogonal polynomials for three Meixner measures
    V. N. Sorokin
    Proceedings of the Steklov Institute of Mathematics, 2017, 298 : 294 - 316
  • [35] Multiple orthogonal polynomials associated with the exponential integral
    Van Assche, Walter
    Wolfs, Thomas
    STUDIES IN APPLIED MATHEMATICS, 2023, 151 (02) : 411 - 449
  • [36] Asymptotic γ-forms generated by multiple orthogonal polynomials
    Aptekarev, A. I.
    Lysov, V. G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 272 : S168 - S173
  • [37] Strong asymptotics for the Pollaczek multiple orthogonal polynomials
    A. I. Aptekarev
    G. López Lagomasino
    A. Martínez-Finkelshtein
    Doklady Mathematics, 2015, 92 : 709 - 713
  • [38] On the q-Charlier Multiple Orthogonal Polynomials
    Arvesu, Jorge
    Ramirez-Aberastruris, Andys M.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [39] Meixner Multiple Orthogonal Polynomials on Interlacing Lattices
    Aptekarev, A. I.
    Dyachenko, A. V.
    Lysov, V. G.
    MATHEMATICAL NOTES, 2024, 115 (3-4) : 642 - 646
  • [40] Strong asymptotics for the Pollaczek multiple orthogonal polynomials
    Aptekarev, A. I.
    Lopez Lagomasino, G.
    Martinez-Finkelshtein, A.
    DOKLADY MATHEMATICS, 2015, 92 (03) : 709 - 713