On the q-Charlier Multiple Orthogonal Polynomials

被引:7
|
作者
Arvesu, Jorge [1 ]
Ramirez-Aberastruris, Andys M. [1 ]
机构
[1] Univ Carlos III Madrid, Dept Math, Leganes 28911, Spain
关键词
multiple orthogonal polynomials; Hermite-Pade approximation; difference equations; classical orthogonal polynomials of a discrete variable; Charlier polynomials; q-polynomials; ASYMPTOTICS; ZEROS;
D O I
10.3842/SIGMA.2015.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new family of special functions, namely q-Charlier multiple orthogonal polynomials. These polynomials are orthogonal with respect to q-analogues of Poisson distributions. We focus our attention on their structural properties. Raising and lowering operators as well as Rodrigues-type formulas are obtained. An explicit representation in terms of a q-analogue of the second of Appell's hypergeometric functions is given. A high-order linear q-difference equation with polynomial coefficients is deduced. Moreover, we show how to obtain the nearest neighbor recurrence relation from some difference operators involved in the Rodrigues-type formula.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] COMBINATORICS OF Q-CHARLIER POLYNOMIALS
    DEMEDICIS, A
    STANTON, D
    WHITE, D
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1995, 69 (01) : 87 - 114
  • [2] q-Discrete distributions based on q-Meixner and q-Charlier orthogonal polynomials-Asymptotic behaviour
    Kyriakoussis, Andreas
    Vamvakari, Malvina G.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (08) : 2285 - 2294
  • [3] Jacobi matrix pair and dual alternative q-Charlier polynomials
    Atakishiyev N.M.
    Klimyk A.U.
    [J]. Ukrainian Mathematical Journal, 2005, 57 (5) : 728 - 737
  • [4] THE Q-STIRLING NUMBERS, CONTINUED FRACTIONS AND THE Q-CHARLIER AND Q-LAGUERRE POLYNOMIALS
    ZENG, J
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 57 (03) : 413 - 424
  • [5] On the ω-multiple Charlier polynomials
    Ozarslan, Mehmet Ali
    Baran, Gizem
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [6] On the ω-multiple Charlier polynomials
    Mehmet Ali Özarslan
    Gizem Baran
    [J]. Advances in Difference Equations, 2021
  • [7] Exceptional Charlier and Hermite orthogonal polynomials
    Duran, Antonio J.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2014, 182 : 29 - 58
  • [8] FROM GRAM-CHARLIER SERIES TO ORTHOGONAL POLYNOMIALS
    Eggers, H. C.
    [J]. ACTA PHYSICA POLONICA B, 2009, 40 (04): : 1209 - 1215
  • [9] d-Orthogonal Charlier Polynomials and the Weyl Algebra
    Vinet, Luc
    Zhedanov, Alexei
    [J]. GROUP 28: PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRY: PROCEEDINGS OF THE 28TH INTERNATIONAL COLLOQUIUM ON GROUP-THEORETICAL METHODS IN PHYSICS, 2011, 284
  • [10] Polynomials Orthogonal with Respect to Sobolev Type Inner Product Generated by Charlier Polynomials
    Sharapudinov, I. I.
    Guseinov, I. G.
    [J]. IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2018, 18 (02): : 196 - 205