On the ω-multiple Charlier polynomials

被引:0
|
作者
Mehmet Ali Özarslan
Gizem Baran
机构
[1] Eastern Mediterranean University,Department of Mathematics, Faculty of Arts and Sciences
关键词
Multiple orthogonal polynomials; -multiple Charlier polynomials; Appell polynomials; Hypergeometric function; Rodrigues formula; Generating function; Difference equation; 33C45; 33D50; 33E50;
D O I
暂无
中图分类号
学科分类号
摘要
The main aim of this paper is to define and investigate more general multiple Charlier polynomials on the linear lattice ωN={0,ω,2ω,…}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega \mathbb{N} = \{ 0,\omega ,2\omega ,\ldots \} $\end{document}, ω∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega \in \mathbb{R}$\end{document}. We call these polynomials ω-multiple Charlier polynomials. Some of their properties, such as the raising operator, the Rodrigues formula, an explicit representation and a generating function are obtained. Also an (r+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$( r+1 )$\end{document}th order difference equation is given. As an example we consider the case ω=32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega =\frac{3}{2}$\end{document} and define 32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{3}{2}$\end{document}-multiple Charlier polynomials. It is also mentioned that, in the case ω=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega =1$\end{document}, the obtained results coincide with the existing results of multiple Charlier polynomials.
引用
收藏
相关论文
共 50 条
  • [1] On the ω-multiple Charlier polynomials
    Ozarslan, Mehmet Ali
    Baran, Gizem
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [2] Asymptotics for the ratio and the zeros of multiple Charlier polynomials
    Ndayiragije, Francois
    Van Assche, Walter
    [J]. JOURNAL OF APPROXIMATION THEORY, 2013, 170 : 3 - 20
  • [3] Difference equations for multiple Charlier and Meixner polynomials
    Van Assche, W
    [J]. PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON DIFFERENCE EQUATIONS: NEW PROGRESS IN DIFFERENCE EQUATIONS, 2004, : 549 - 557
  • [4] On the q-Charlier Multiple Orthogonal Polynomials
    Arvesu, Jorge
    Ramirez-Aberastruris, Andys M.
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2015, 11
  • [5] Asymptotics for the ratio and the zeros of multiple Charlier polynomials
    Ndayiragije, Francois
    Van Assche, Walter
    [J]. JOURNAL OF APPROXIMATION THEORY, 2012, 164 (06) : 823 - 840
  • [6] Non-Hermitian oscillator Hamiltonians and multiple Charlier polynomials
    Miki, Hiroshi
    Vinet, Luc
    Zhedanov, Alexei
    [J]. PHYSICS LETTERS A, 2011, 376 (02) : 65 - 69
  • [7] Charlier polynomials and charlier oscillator as discrete realization of the harmonic oscillator
    Borzov V.V.
    Damaskinskii E.V.
    [J]. Journal of Mathematical Sciences, 2005, 128 (5) : 3161 - 3176
  • [8] On the computational aspects of Charlier polynomials
    Abdul-Hadi, Alaa M.
    Abdulhussain, Sadiq H.
    Mahmmod, Basheera M.
    [J]. COGENT ENGINEERING, 2020, 7 (01):
  • [9] Bispectrality of Charlier type polynomials
    Duran, Antonio J.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2019, : 601 - 627
  • [10] On Charlier polynomials in testing Poissonity
    Ledwinaa, Teresa
    Wylupek, Grzegorz
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (03) : 1918 - 1932