On the ω-multiple Charlier polynomials

被引:0
|
作者
Mehmet Ali Özarslan
Gizem Baran
机构
[1] Eastern Mediterranean University,Department of Mathematics, Faculty of Arts and Sciences
关键词
Multiple orthogonal polynomials; -multiple Charlier polynomials; Appell polynomials; Hypergeometric function; Rodrigues formula; Generating function; Difference equation; 33C45; 33D50; 33E50;
D O I
暂无
中图分类号
学科分类号
摘要
The main aim of this paper is to define and investigate more general multiple Charlier polynomials on the linear lattice ωN={0,ω,2ω,…}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega \mathbb{N} = \{ 0,\omega ,2\omega ,\ldots \} $\end{document}, ω∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega \in \mathbb{R}$\end{document}. We call these polynomials ω-multiple Charlier polynomials. Some of their properties, such as the raising operator, the Rodrigues formula, an explicit representation and a generating function are obtained. Also an (r+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$( r+1 )$\end{document}th order difference equation is given. As an example we consider the case ω=32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega =\frac{3}{2}$\end{document} and define 32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{3}{2}$\end{document}-multiple Charlier polynomials. It is also mentioned that, in the case ω=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega =1$\end{document}, the obtained results coincide with the existing results of multiple Charlier polynomials.
引用
收藏
相关论文
共 50 条