On Lp multiple orthogonal polynomials

被引:2
|
作者
Kroo, Andras [1 ,2 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
[2] Budapest Univ Technol & Econ, Dept Anal, Budapest, Hungary
关键词
Multiple orthogonal polynomials; Multiple extremal polynomials; L-p norm; Weak Chebyshev spaces;
D O I
10.1016/j.jmaa.2013.05.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Denote by P-n the space of real algebraic polynomials of degree at most n - 1 and consider a multi-index n := (n(1), ... , n(d)) is an element of N-d, d >= 1, of length vertical bar n vertical bar := n(1) + ... + n(d). Then given the nonnegative weight functions w(j) is an element of L-infinity [a, b], 1 <= j <= d, the polynomial Q is an element of P vertical bar n vertical bar+1 \ {0} is called a multiple orthogonal polynomial relative to n and the weights w(j), 1 <= j <= d, if integral([a,b]) wj(x)x(k)Q(x)d mu = 0, 0 <= k <= n(j) - 1, 1 <= j <= d. The above orthogonality relations are equivalent to the conditions for the L-2 multiple best approximation parallel to Q parallel to(L2(wj)) <= parallel to Q - g parallel to(L2(wj)), for all g is an element of P-nj, 1 <= j <= d. The existence of multiple L-2 orthogonal polynomials easily follows from the solvability of the above linear system. The analogous question for the multiple best L-p approximation, i.e., the existence of an extremal polynomial Q(p) is an element of P vertical bar n vertical bar+1 \ (0) satisfying parallel to Q(p)parallel to(Lp(wj)) <= parallel to Q(p) - g parallel to(Lp(wj)), for all g is an element of P-nj, 1 <= j <= d, poses a more difficult nonlinear problem when 1 <= p <= infinity, p not equal 2. In this paper we shall address this question and verify the existence and uniqueness of multiple L-p orthogonal polynomials under proper conditions. (C) 2013 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:147 / 156
页数:10
相关论文
共 50 条
  • [21] Ratio Asymptotics for Multiple Orthogonal Polynomials
    Van Assche, Walter
    MODERN TRENDS IN CONSTRUCTIVE FUNCTION THEORY, 2016, 661 : 73 - +
  • [22] MULTIPLE ASKEY-WILSON POLYNOMIALS AND RELATED BASIC HYPERGEOMETRIC MULTIPLE ORTHOGONAL POLYNOMIALS
    Nuwacu, Jean Paul
    Van Assche, Walter
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (12) : 8289 - 8312
  • [23] Interlacing properties of zeros of multiple orthogonal polynomials
    Haneczok, Maciej
    Van Assche, Walter
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 429 - 438
  • [24] Computing recurrence coefficients of multiple orthogonal polynomials
    Galina Filipuk
    Maciej Haneczok
    Walter Van Assche
    Numerical Algorithms, 2015, 70 : 519 - 543
  • [25] Asymptotic γ-forms generated by multiple orthogonal polynomials
    A. I. Aptekarev
    V. G. Lysov
    Proceedings of the Steklov Institute of Mathematics, 2011, 272 : 168 - 173
  • [26] On Multiple Orthogonal Polynomials for Three Meixner Measures
    Sorokin, V. N.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 298 (01) : 294 - 316
  • [27] Computing recurrence coefficients of multiple orthogonal polynomials
    Filipuk, Galina
    Haneczok, Maciej
    Van Assche, Walter
    NUMERICAL ALGORITHMS, 2015, 70 (03) : 519 - 543
  • [28] Classical multiple orthogonal polynomials of Angelesco system
    Lee, D. W.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (12) : 1342 - 1351
  • [29] INTEGRAL AND HYPERGEOMETRIC REPRESENTATIONS FOR MULTIPLE ORTHOGONAL POLYNOMIALS
    Branquinho, Amílcar
    Díaz, Juan E.F.
    Foulquié-Moreno, Ana
    Mañas, Manuel
    Wolfs, Thomas
    arXiv,
  • [30] On multiple orthogonal polynomials for discrete Meixner measures
    Sorokin, V. N.
    SBORNIK MATHEMATICS, 2010, 201 (10) : 1539 - 1561