Ultrafast optogenetic control

被引:507
|
作者
Gunaydin, Lisa A. [1 ,2 ]
Yizhar, Ofer [1 ]
Berndt, Andre [3 ]
Sohal, Vikaas S. [1 ,4 ]
Deisseroth, Karl [1 ,4 ]
Hegemann, Peter [3 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Neurosci Program, Stanford, CA 94305 USA
[3] Humboldt Univ, Inst Biol, Berlin, Germany
[4] Stanford Univ, Dept Psychiat & Behav Sci, Stanford, CA 94305 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
NEURONS; CHANNELRHODOPSIN-2; OSCILLATIONS; CHANNEL; RESPONSES; CELLS;
D O I
10.1038/nn.2495
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Channelrhodopsins such as channelrhodopsin-2 (ChR2) can drive spiking with millisecond precision in a wide variety of cells, tissues and animal species. However, several properties of this protein have limited the precision of optogenetic control. First, when ChR2 is expressed at high levels, extra spikes ( for example, doublets) can occur in response to a single light pulse, with potential implications as doublets may be important for neural coding. Second, many cells cannot follow ChR2-driven spiking above the gamma (similar to 40 Hz) range in sustained trains, preventing temporally stationary optogenetic access to a broad and important neural signaling band. Finally, rapid optically driven spike trains can result in plateau potentials of 10 mV or more, causing incidental upstates with information-processing implications. We designed and validated an engineered opsin gene (ChETA) that addresses all of these limitations ( profoundly reducing extra spikes, eliminating plateau potentials and allowing temporally stationary, sustained spike trains up to at least 200 Hz).
引用
收藏
页码:387 / U27
页数:7
相关论文
共 50 条
  • [1] Ultrafast optogenetic control
    Lisa A Gunaydin
    Ofer Yizhar
    André Berndt
    Vikaas S Sohal
    Karl Deisseroth
    Peter Hegemann
    Nature Neuroscience, 2010, 13 : 387 - 392
  • [2] Lamprey Parapinopsin ("UVLamP"): a Bistable UV-Sensitive Optogenetic Switch for Ultrafast Control of GPCR Pathways
    Eickelbeck, Dennis
    Rudack, Till
    Tennigkeit, Stefan Alexander
    Surdin, Tatjana
    Karapinar, Raziye
    Schwitalla, Jan-Claudius
    Muecher, Brix
    Shulman, Maiia
    Scherlo, Marvin
    Althoff, Philipp
    Mark, Melanie D.
    Gerwert, Klaus
    Herlitze, Stefan
    CHEMBIOCHEM, 2020, 21 (05) : 612 - 617
  • [3] Optogenetic control of β cell function
    Jimenez-Gonzalez, Maria
    Stanley, Sarah
    NATURE BIOMEDICAL ENGINEERING, 2024, 8 (07) : 801 - 803
  • [4] Optogenetic Control of Cells and Circuits
    Miesenboeck, Gero
    ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 27, 2011, 27 : 731 - 758
  • [5] Optogenetic control of kinetochore function
    Zhang, Huaiying
    Aonbangkhen, Chanat
    Tarasovetc, Ekaterina V.
    Ballister, Edward R.
    Chenoweth, David M.
    Lampson, Michael A.
    NATURE CHEMICAL BIOLOGY, 2017, 13 (10) : 1096 - +
  • [6] Optogenetic control of ROS production
    Wojtovich, Andrew P.
    Foster, Thomas H.
    REDOX BIOLOGY, 2014, 2 : 368 - 376
  • [7] Optogenetic control of nerve growth
    Park, Seongjun
    Koppes, Ryan A.
    Froriep, Ulrich P.
    Jia, Xiaoting
    Achyuta, Anil Kumar H.
    McLaughlin, Bryan L.
    Anikeeva, Polina
    SCIENTIFIC REPORTS, 2015, 5
  • [8] Optogenetic control of nerve growth
    Seongjun Park
    Ryan A. Koppes
    Ulrich P. Froriep
    Xiaoting Jia
    Anil Kumar H. Achyuta
    Bryan L. McLaughlin
    Polina Anikeeva
    Scientific Reports, 5
  • [9] Optogenetic control in monkey brains
    Leonie Welberg
    Nature Reviews Neuroscience, 2012, 13 (9) : 603 - 603
  • [10] Optogenetic control of ATP release
    Lewis, Matthew A.
    Joshi, Bipin
    Gu, Ling
    Feranchak, Andrew
    Mohanty, Samarendra K.
    OPTOGENETICS: OPTICAL METHODS FOR CELLULAR CONTROL, 2013, 8586