Robust estimation of a high-dimensional integrated covariance matrix

被引:1
|
作者
Morimoto, Takayuki [1 ]
Nagata, Shuichi [2 ]
机构
[1] Kwansei Gakuin Univ, Dept Math Sci, 2-1 Gakuen, Sanda, Hyogo 6691337, Japan
[2] Kwansei Gakuin Univ, Sch Business Adm, Ichiban Cho, Nishinomiya, Hyogo, Japan
关键词
High-dimensional matrix; High-frequency data; Market microstructure noise; Realized covariance; Tracy-Widom law; LARGEST EIGENVALUE; RETURN; NOISE;
D O I
10.1080/03610918.2014.991038
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider a robust method of estimating a realized covariance matrix calculated as the sum of cross products of intraday high-frequency returns. According to recent articles in financial econometrics, the realized covariance matrix is essentially contaminated with market microstructure noise. Although techniques for removing noise from the matrix have been studied since the early 2000s, they have primarily investigated a low-dimensional covariance matrix with statistically significant sample sizes. We focus on noise-robust covariance estimation under converse circumstances, that is, a high-dimensional covariance matrix possibly with a small sample size. For the estimation, we utilize a statistical hypothesis test based on the characteristic that the largest eigenvalue of the covariance matrix asymptotically follows a Tracy-Widom distribution. The null hypothesis assumes that log returns are not pure noises. If a sample eigenvalue is larger than the relevant critical value, then we fail to reject the null hypothesis. The simulation results show that the estimator studied here performs better than others as measured by mean squared error. The empirical analysis shows that our proposed estimator can be adopted to forecast future covariance matrices using real data.
引用
下载
收藏
页码:1102 / 1112
页数:11
相关论文
共 50 条
  • [21] A Best Linear Empirical Bayes Method for High-Dimensional Covariance Matrix Estimation
    Yuan, Jin
    Yuan, Xianghui
    SAGE OPEN, 2023, 13 (02):
  • [22] Robust sparse precision matrix estimation for high-dimensional compositional data
    Liang, Wanfeng
    Wu, Yue
    Ma, Xiaoyan
    STATISTICS & PROBABILITY LETTERS, 2022, 184
  • [23] A robust test for sphericity of high-dimensional covariance matrices
    Tian, Xintao
    Lu, Yuting
    Li, Weiming
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 141 : 217 - 227
  • [24] Robust covariance estimation for high-dimensional compositional data with application to microbial communities analysis
    He, Yong
    Liu, Pengfei
    Zhang, Xinsheng
    Zhou, Wang
    STATISTICS IN MEDICINE, 2021, 40 (15) : 3499 - 3515
  • [25] A Sparse Approximate Factor Model for High-Dimensional Covariance Matrix Estimation and Portfolio Selection
    Daniele, Maurizio
    Pohlmeier, Winfried
    Zagidullina, Aygul
    JOURNAL OF FINANCIAL ECONOMETRICS, 2024,
  • [26] High-dimensional covariance matrix estimation using a low-rank and diagonal decomposition
    Wu, Yilei
    Qin, Yingli
    Zhu, Mu
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2020, 48 (02): : 308 - 337
  • [27] Fast and Positive Definite Estimation of Large Covariance Matrix for High-Dimensional Data Analysis
    Wen, Fei
    Chu, Lei
    Ying, Rendong
    Liu, Peilin
    IEEE TRANSACTIONS ON BIG DATA, 2021, 7 (03) : 603 - 609
  • [28] High-dimensional covariance estimation under the presence of outliers
    Huang, Hsin-Cheng
    Lee, Thomas C. M.
    STATISTICS AND ITS INTERFACE, 2016, 9 (04) : 461 - 468
  • [29] High-dimensional realized covariance estimation: a parametric approach
    Buccheri, G.
    Anga, G. Mboussa
    QUANTITATIVE FINANCE, 2022, 22 (11) : 2093 - 2107
  • [30] Fast covariance estimation for high-dimensional functional data
    Luo Xiao
    Vadim Zipunnikov
    David Ruppert
    Ciprian Crainiceanu
    Statistics and Computing, 2016, 26 : 409 - 421