Data analysis methods for synthetic polymer mass spectrometry: Autocorrelation

被引:21
|
作者
Wallace, WE [1 ]
Guttman, CM [1 ]
机构
[1] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
关键词
autocorrelation; correlation function; data analysis methods; informatics; mass spectrometry; polymer; time series;
D O I
10.6028/jres.107.005
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Autocorrelation is shown to be useful in describing the periodic patterns found in high-resolution mass spectra of synthetic polymers. Examples of this usefulness are described for a simple linear homopolymer to demonstrate the method fundamentals, a condensation polymer to demonstrate its utility in understanding complex spectra with multiple repeating patterns on different mass scales, and a condensation copolymer to demonstrate how it can elegantly and efficiently reveal unexpected phenomena. It is shown that using autocorrelation to determine where the signal devolves into noise can be useful in determining molecular mass distributions of synthetic polymers, a primary focus of the NIST synthetic polymer mass spectrometry effort. The appendices describe some of the effects of transformation from time to mass space when time-of-flight mass separation is used, as well as the effects of non-trivial baselines on the autocorrelation function.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [41] MALDI-TOF mass spectrometry in the analysis of synthetic polymers
    Rader, HJ
    Schrepp, W
    ACTA POLYMERICA, 1998, 49 (06) : 272 - 293
  • [42] Application of mass spectrometry to the analysis of natural and synthetic sulfated oligosaccharides
    Silvestro, L
    Savu, SR
    vanVeelen, PA
    Jacobs, PL
    NONANTICOAGULANT ACTIONS OF GLYCOSAMINOGLYCANS, 1996, : 27 - 46
  • [43] Computational Methods for Protein Identification from Mass Spectrometry Data
    McHugh, Leo
    Arthur, Jonathan W.
    PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (02)
  • [44] Methods of processing mass spectrometry data to identify peptides and proteins
    Berizovskaya E.I.
    Ichalaynen A.A.
    Antochin A.M.
    Taranchenko V.F.
    Goncharov V.M.
    Mitrofanov D.A.
    Udintsev A.V.
    Aksenov A.V.
    Shevlyakova O.A.
    Rodin I.A.
    Shpigun O.A.
    Moscow University Chemistry Bulletin, 2015, 70 (5) : 211 - 222
  • [45] Characterizing synthetic polymers and additives using new ionization methods for mass spectrometry
    El-Baba, Tarick J.
    Lutomski, Corinne A.
    Wang, Beixi
    Trimpin, Sarah
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2014, 28 (11) : 1175 - 1184
  • [46] The role of the acquisition methods in the analysis of natural and synthetic steroids and cholic acids by gas chromatography-mass spectrometry
    Andrasi, N.
    Helenkar, A.
    Vasanits-Zsigrai, A.
    Zaray, Gy.
    Molnar-Perl, I.
    JOURNAL OF CHROMATOGRAPHY A, 2011, 1218 (45) : 8264 - 8272
  • [47] Progress in Data Analysis Methods for Proteome Mass Spectrometry Based onData-independent Acquisition
    Hou, Xin-Hang
    Zhou, Pi-Yu
    Gong, Peng-Yun
    Fu, Jia-Le
    Liu, Chao
    Wang, Hai-Peng
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2022, 49 (12) : 2364 - 2386
  • [48] Biological and environmental analysis with new methods of mass spectrometry
    Lehmann, E
    NACHRICHTEN AUS CHEMIE TECHNIK UND LABORATORIUM, 1999, 47 (05): : 529 - 531
  • [49] Methods review: Mass spectrometry analysis of RNAPII complexes
    Burriss, Katlyn Hughes
    Mosley, Amber L.
    METHODS, 2019, 159 : 105 - 114
  • [50] Mass Spectrometry Methods for In Situ Analysis of Clinical Biomolecules
    Ma, Wen
    Xu, Shuting
    Liu, Huwei
    Bai, Yu
    SMALL METHODS, 2020, 4 (04)