Data analysis methods for synthetic polymer mass spectrometry: Autocorrelation

被引:21
|
作者
Wallace, WE [1 ]
Guttman, CM [1 ]
机构
[1] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
关键词
autocorrelation; correlation function; data analysis methods; informatics; mass spectrometry; polymer; time series;
D O I
10.6028/jres.107.005
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Autocorrelation is shown to be useful in describing the periodic patterns found in high-resolution mass spectra of synthetic polymers. Examples of this usefulness are described for a simple linear homopolymer to demonstrate the method fundamentals, a condensation polymer to demonstrate its utility in understanding complex spectra with multiple repeating patterns on different mass scales, and a condensation copolymer to demonstrate how it can elegantly and efficiently reveal unexpected phenomena. It is shown that using autocorrelation to determine where the signal devolves into noise can be useful in determining molecular mass distributions of synthetic polymers, a primary focus of the NIST synthetic polymer mass spectrometry effort. The appendices describe some of the effects of transformation from time to mass space when time-of-flight mass separation is used, as well as the effects of non-trivial baselines on the autocorrelation function.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [21] APPLICATION OF AUXILIARY METHODS OF ANALYSIS TO MASS SPECTROMETRY
    PITTS, JN
    CALVERT, JG
    BLACET, FE
    ANALYTICAL CHEMISTRY, 1951, 23 (11) : 1710 - 1710
  • [22] Multivariate denoising methods combining wavelets and principal component analysis for mass spectrometry data
    Mostacci, Elise
    Truntzer, Caroline
    Cardot, Herve
    Ducoroy, Patrick
    PROTEOMICS, 2010, 10 (14) : 2564 - 2572
  • [23] Mass Spectrometry: Investments in Software Apparent in New Products and Innovative Data Analysis Methods
    Musselman, Brian
    AMERICAN LABORATORY, 2015, 47 (04) : 22 - 23
  • [24] A Review on Differential Abundance Analysis Methods for Mass Spectrometry-Based Metabolomic Data
    Huang, Zhengyan
    Wang, Chi
    METABOLITES, 2022, 12 (04)
  • [25] Comparison of imputation and imputation-free methods for statistical analysis of mass spectrometry data with missing data
    Taylor, Sandra
    Ponzini, Matthew
    Wilson, Machelle
    Kim, Kyoungmi
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [26] Mass Spectrometry of Synthetic Polysiloxanes: From Linear Models to Plasma Polymer Networks
    Fouquet, Thierry
    CHEMISTRYOPEN, 2014, 3 (06): : 269 - 273
  • [27] Applications of simultaneous thermogravimetry mass spectrometry in polymer analysis
    Raemaekers, KGH
    Bart, JCJ
    THERMOCHIMICA ACTA, 1997, 295 (1-2) : 1 - 58
  • [28] POLYMER ANALYSIS BY PHOTONS, SPRAYS, AND MASS-SPECTROMETRY
    CAMPANA, JE
    SHENG, LS
    SHEW, SL
    WINGER, BE
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 1994, 13 (06) : 239 - 247
  • [29] Analysis of Polymer Additives and Impurities by Liquid Chromatography/Mass Spectrometry and Capillary Electrophoresis/Mass Spectrometry
    Buchberger, Wolfgang
    Stiftinger, Martin
    MASS SPECTROMETRY OF POLYMERS - NEW TECHNIQUES, 2012, 248 : 39 - 67
  • [30] Methods to account for spatial autocorrelation in the analysis of species distributional data:: a review
    Dormann, Carsten F.
    McPherson, Jana M.
    Araujo, Miguel B.
    Bivand, Roger
    Bolliger, Janine
    Carl, Gudrun
    Davies, Richard G.
    Hirzel, Alexandre
    Jetz, Walter
    Kissling, W. Daniel
    Kuehn, Ingolf
    Ohlemueller, Ralf
    Peres-Neto, Pedro R.
    Reineking, Bjoern
    Schroeder, Boris
    Schurr, Frank M.
    Wilson, Robert
    ECOGRAPHY, 2007, 30 (05) : 609 - 628