On the trace of random walks on random graphs

被引:1
|
作者
Frieze, Alan [1 ]
Krivelevich, Michael [2 ]
Michaeli, Peleg [2 ]
Peled, Ron [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Tel Aviv Univ, Sch Math Sci, Raymond & Beverly Sackler Fac Exact Sci, IL-6997801 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
COVER TIME;
D O I
10.1112/plms.12083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study graph-theoretic properties of the trace of a random walk on a random graph. We show that for any epsilon>0 there exists C>1 such that the trace of the simple random walk of length (1+epsilon)nlnn on the random graph G approximate to G(n,p) for p>Clnn/n is, with high probability, Hamiltonian and (lnn)-connected. In the special case p=1 (that is, when G=Kn), we show a hitting time result according to which, with high probability, exactly one step after the last vertex has been visited, the trace becomes Hamiltonian, and one step after the last vertex has been visited for the k'th time, the trace becomes 2k-connected.
引用
收藏
页码:847 / 877
页数:31
相关论文
共 50 条
  • [41] Meeting times of random walks on graphs
    Bshouty, NH
    Higham, L
    Warpechowska-Gruca, J
    INFORMATION PROCESSING LETTERS, 1999, 69 (05) : 259 - 265
  • [42] RESTRICTED RANDOM-WALKS ON GRAPHS
    RANDIC, M
    THEORETICA CHIMICA ACTA, 1995, 92 (02): : 97 - 106
  • [43] The Einstein Relation for Random Walks on Graphs
    András Telcs
    Journal of Statistical Physics, 2006, 122 : 617 - 645
  • [44] Reciprocal classes of random walks on graphs
    Conforti, Giovanni
    Leonard, Christian
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (06) : 1870 - 1896
  • [45] Deterministic random walks on finite graphs
    Kijima, Shuji
    Koga, Kentaro
    Makino, Kazuhisa
    RANDOM STRUCTURES & ALGORITHMS, 2015, 46 (04) : 739 - 761
  • [46] Random Walks on Directed Covers of Graphs
    Lorenz A. Gilch
    Sebastian Müller
    Journal of Theoretical Probability, 2011, 24 : 118 - 149
  • [47] Random Walks on Randomly Evolving Graphs
    Cai, Leran
    Sauerwald, Thomas
    Zanetti, Luca
    STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, SIROCCO 2020, 2020, 12156 : 111 - 128
  • [48] Existence of the Harmonic Measure for Random Walks on Graphs and in Random Environments
    Daniel Boivin
    Clément Rau
    Journal of Statistical Physics, 2013, 150 : 235 - 263
  • [49] The Einstein relation for random walks on graphs
    Teles, A
    JOURNAL OF STATISTICAL PHYSICS, 2006, 122 (04) : 617 - 645
  • [50] Gillis's random walks on graphs
    Guillotin-Plantard, N
    JOURNAL OF APPLIED PROBABILITY, 2005, 42 (01) : 295 - 301