On the trace of random walks on random graphs

被引:1
|
作者
Frieze, Alan [1 ]
Krivelevich, Michael [2 ]
Michaeli, Peleg [2 ]
Peled, Ron [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Tel Aviv Univ, Sch Math Sci, Raymond & Beverly Sackler Fac Exact Sci, IL-6997801 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
COVER TIME;
D O I
10.1112/plms.12083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study graph-theoretic properties of the trace of a random walk on a random graph. We show that for any epsilon>0 there exists C>1 such that the trace of the simple random walk of length (1+epsilon)nlnn on the random graph G approximate to G(n,p) for p>Clnn/n is, with high probability, Hamiltonian and (lnn)-connected. In the special case p=1 (that is, when G=Kn), we show a hitting time result according to which, with high probability, exactly one step after the last vertex has been visited, the trace becomes Hamiltonian, and one step after the last vertex has been visited for the k'th time, the trace becomes 2k-connected.
引用
收藏
页码:847 / 877
页数:31
相关论文
共 50 条
  • [31] On the norms of the random walks on planar graphs
    Zuk, A
    ANNALES DE L INSTITUT FOURIER, 1997, 47 (05) : 1463 - +
  • [32] Resistance distance in graphs and random walks
    Palacios, JL
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2001, 81 (01) : 29 - 33
  • [33] Random walks systems on complete graphs
    Oswaldo S. M. Alves
    Elcio Lebensztayn
    Fábio P. Machado
    Mauricio Z. Martinez
    Bulletin of the Brazilian Mathematical Society, 2006, 37 : 571 - 580
  • [34] Random Walks on Complete Multipartite Graphs
    Chang, Xiao
    Xu, Hao
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2015, 11 (03) : 393 - 402
  • [35] Local time of random walks on graphs
    Zatloukal, Vaclav
    PHYSICAL REVIEW E, 2021, 104 (04)
  • [36] RANDOM-WALKS ON COLORED GRAPHS
    CONDON, A
    HERNEK, D
    RANDOM STRUCTURES & ALGORITHMS, 1994, 5 (02) : 285 - 303
  • [37] RANDOM-WALKS ON DEBRUIJN GRAPHS
    MORI, TF
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1992, 37 (01) : 158 - 160
  • [38] Random walks systems on complete graphs
    Alves, Oswaldo S. M.
    Lebensztayn, Elcio
    Machado, Fabio P.
    Martinez, Mauricio Z.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2006, 37 (04): : 571 - 580
  • [39] Simple random walks on wheel graphs
    Yang, Yujun
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 : 123 - 128
  • [40] Random Walks on Directed Covers of Graphs
    Gilch, Lorenz A.
    Mueller, Sebastian
    JOURNAL OF THEORETICAL PROBABILITY, 2011, 24 (01) : 118 - 149