On the trace of random walks on random graphs

被引:1
|
作者
Frieze, Alan [1 ]
Krivelevich, Michael [2 ]
Michaeli, Peleg [2 ]
Peled, Ron [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Tel Aviv Univ, Sch Math Sci, Raymond & Beverly Sackler Fac Exact Sci, IL-6997801 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
COVER TIME;
D O I
10.1112/plms.12083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study graph-theoretic properties of the trace of a random walk on a random graph. We show that for any epsilon>0 there exists C>1 such that the trace of the simple random walk of length (1+epsilon)nlnn on the random graph G approximate to G(n,p) for p>Clnn/n is, with high probability, Hamiltonian and (lnn)-connected. In the special case p=1 (that is, when G=Kn), we show a hitting time result according to which, with high probability, exactly one step after the last vertex has been visited, the trace becomes Hamiltonian, and one step after the last vertex has been visited for the k'th time, the trace becomes 2k-connected.
引用
收藏
页码:847 / 877
页数:31
相关论文
共 50 条
  • [21] CUTOFF PHENOMENA FOR RANDOM WALKS ON RANDOM REGULAR GRAPHS
    Lubetzky, Eyal
    Sly, Allan
    DUKE MATHEMATICAL JOURNAL, 2010, 153 (03) : 475 - 510
  • [22] VIRAL PROCESSES BY RANDOM WALKS ON RANDOM REGULAR GRAPHS
    Abdullah, Mohammed
    Cooper, Colin
    Draief, Moez
    ANNALS OF APPLIED PROBABILITY, 2015, 25 (02): : 477 - 522
  • [23] Random walks on regular and irregular graphs
    Coppersmith, D
    Feige, U
    Shearer, J
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (02) : 301 - 308
  • [24] Exploring complex graphs by random walks
    Tadic, B
    MODELING OF COMPLEX SYSTEMS, 2003, 661 : 24 - 27
  • [25] Random walks and local cuts in graphs
    Chung, Fan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 22 - 32
  • [26] Random walks on edge transitive graphs
    Palacios, J. L.
    Renom, J. M.
    Statistics & Probability Letters, 37 (01):
  • [27] Sampling Directed Graphs with Random Walks
    Ribeiro, Bruno
    Wang, Pinghui
    Murai, Fabricio
    Towsley, Don
    2012 PROCEEDINGS IEEE INFOCOM, 2012, : 1692 - 1700
  • [28] Random walks on edge transitive graphs
    Palacios, JL
    Renom, JM
    STATISTICS & PROBABILITY LETTERS, 1998, 37 (01) : 29 - 34
  • [29] RANDOM WALKS ON DENSE GRAPHS AND GRAPHONS
    Petit, Julien
    Lambiotte, Renaud
    Carletti, Timoteo
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (06) : 2323 - 2345
  • [30] Reversible random walks on dynamic graphs
    Shimizu, Nobutaka
    Shiraga, Takeharu
    RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (04) : 1100 - 1136