On the trace of random walks on random graphs

被引:1
|
作者
Frieze, Alan [1 ]
Krivelevich, Michael [2 ]
Michaeli, Peleg [2 ]
Peled, Ron [2 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Tel Aviv Univ, Sch Math Sci, Raymond & Beverly Sackler Fac Exact Sci, IL-6997801 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
COVER TIME;
D O I
10.1112/plms.12083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study graph-theoretic properties of the trace of a random walk on a random graph. We show that for any epsilon>0 there exists C>1 such that the trace of the simple random walk of length (1+epsilon)nlnn on the random graph G approximate to G(n,p) for p>Clnn/n is, with high probability, Hamiltonian and (lnn)-connected. In the special case p=1 (that is, when G=Kn), we show a hitting time result according to which, with high probability, exactly one step after the last vertex has been visited, the trace becomes Hamiltonian, and one step after the last vertex has been visited for the k'th time, the trace becomes 2k-connected.
引用
下载
收藏
页码:847 / 877
页数:31
相关论文
共 50 条
  • [1] Random Walks on Random Graphs
    Cooper, Colin
    Frieze, Alan
    NANO-NET, 2009, 3 : 95 - +
  • [2] Random walks on random simple graphs
    Hildebrand, M
    RANDOM STRUCTURES & ALGORITHMS, 1996, 8 (04) : 301 - 318
  • [3] Biased random walks on random graphs
    Ben Arous, Gerard
    Fribergh, Alexander
    PROBABILITY AND STATISTICAL PHYSICS IN ST. PETERSBURG, 2016, 91 : 99 - 153
  • [4] ON THE TRACE OF RANDOM WALKS ON RANDOM GRAPHS USING POISSON (Λ)-GALTON-WATSON TREE
    Vijayaseetha, N.
    Malliga, P.
    Kothandaraman, M.
    Malini, N.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (02): : 973 - 984
  • [5] Collisions of random walks in reversible random graphs
    Hutchcroft, Tom
    Peres, Yuval
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 2 - 6
  • [6] Random Walks and Bisections in Random Circulant Graphs
    Mans, Bernard
    Shparlinski, Igor E.
    LATIN 2012: THEORETICAL INFORMATICS, 2012, 7256 : 542 - 555
  • [7] MULTIPLE RANDOM WALKS IN RANDOM REGULAR GRAPHS
    Cooper, Colin
    Frieze, Alan
    Radzik, Tomasz
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (04) : 1738 - 1761
  • [8] On the cover time for random walks on random graphs
    Jonasson, J
    COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (03): : 265 - 279
  • [9] Large deviations of random walks on random graphs
    Coghi, Francesco
    Morand, Jules
    Touchette, Hugo
    PHYSICAL REVIEW E, 2019, 99 (02)
  • [10] PAGERANK AND RANDOM WALKS ON GRAPHS
    Chung, Fan
    Zhao, Wenbo
    FETE OF COMBINATORICS AND COMPUTER SCIENCE, 2010, 20 : 43 - 62