MEANS: python']python package for Moment Expansion Approximation, iNference and Simulation

被引:8
|
作者
Fan, Sisi [1 ]
Geissmann, Quentin [1 ]
Lakatos, Eszter [1 ]
Lukauskas, Saulius [1 ]
Ale, Angelique [1 ]
Babtie, Ann C. [1 ]
Kirk, Paul D. W. [2 ]
Stumpf, Michael P. H. [1 ]
机构
[1] Imperial Coll London, Dept Life Sci, Ctr Integrat Syst Biol & Bioinformat, London SW7 2AZ, England
[2] MRC Biostat Unit, Cambridge CB2 0SR, England
基金
英国生物技术与生命科学研究理事会;
关键词
CLOSURE APPROXIMATIONS; KINETICS; SOLVERS;
D O I
10.1093/bioinformatics/btw229
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Many biochemical systems require stochastic descriptions. Unfortunately these can only be solved for the simplest cases and their direct simulation can become prohibitively expensive, precluding thorough analysis. As an alternative, moment closure approximation methods generate equations for the time-evolution of the system's moments and apply a closure ansatz to obtain a closed set of differential equations; that can become the basis for the deterministic analysis of the moments of the outputs of stochastic systems. Results: We present a free, user-friendly tool implementing an efficient moment expansion approximation with parametric closures that integrates well with the IPython interactive environment. Our package enables the analysis of complex stochastic systems without any constraints on the number of species and moments studied and the type of rate laws in the system. In addition to the approximation method our package provides numerous tools to help non-expert users in stochastic analysis.
引用
收藏
页码:2863 / 2865
页数:3
相关论文
共 50 条
  • [41] pyBSM: A Python']Python package for modeling imaging systems
    LeMaster, Daniel A.
    Eismann, Michael T.
    LONG-RANGE IMAGING II, 2017, 10204
  • [42] TreeSwift: A massively scalable Python']Python tree package
    Moshiri, N.
    SOFTWAREX, 2020, 11
  • [43] CausalBO: A Python']Python Package for Causal Bayesian Optimization
    Roberts, Jeremy
    Javidian, Mohammad Ali
    SOUTHEASTCON 2024, 2024, : 1370 - 1375
  • [44] pyFUME: a Python']Python Package for Fuzzy Model Estimation
    Fuchs, Caro
    Spolaor, Simone
    Nobile, Marco S.
    Kaymak, Uzay
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [45] dingo: a Python']Python package for metabolic flux sampling
    Chalkis, Apostolos
    Fisikopoulos, Vissarion
    Tsigaridas, Elias
    Zafeiropoulos, Haris
    BIOINFORMATICS ADVANCES, 2024, 4 (01):
  • [46] pyMune: A Python']Python package for complex clusters detection
    Abbas, Mohamed Ali
    El-Zoghabi, Adel
    Shoukry, Amin
    SOFTWARE IMPACTS, 2023, 17
  • [47] pymetamodels: A Python']Python package for metamodeling and design automation
    Escribano, Nicolas
    Bielsa, Jose Manuel
    Lahuerta, Francisco
    SOFTWAREX, 2024, 26
  • [48] A Python']Python upgrade to the GooFit package for parallel fitting
    Schreiner, Henry
    Pandey, Himadri
    Sokoloff, Michael D.
    Hittle, Bradley
    Tomko, Karen
    Hasse, Christoph
    23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018), 2019, 214
  • [49] ADOpy: a python']python package for adaptive design optimization
    Yang, Jaeyeong
    Pitt, Mark A.
    Ahn, Woo-Young
    Myung, Jay I.
    BEHAVIOR RESEARCH METHODS, 2021, 53 (02) : 874 - 897
  • [50] pyjeo: A Python']Python Package for the Analysis of Geospatial Data
    Kempeneers, Pieter
    Pesek, Ondrej
    De Marchi, Davide
    Soille, Pierre
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (10)