TreeSwift: A massively scalable Python']Python tree package

被引:15
|
作者
Moshiri, N. [1 ]
机构
[1] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
关键词
Phylogenetics; Tree traversal; Scalable; !text type='Python']Python[!/text;
D O I
10.1016/j.softx.2020.100436
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Phylogenetic trees are essential to evolutionary biology, and numerous methods exist that attempt to extract phylogenetic information applicable to a wide range of disciplines, such as epidemiology and metagenomics. Currently, the three main Python packages for trees are Bio.Phylo, DendroPy, and the ETE Toolkit, but as dataset sizes grow, parsing and manipulating ultra-large trees becomes impractical for these tools. To address this issue, we present TreeSwift, a user-friendly and massively scalable Python package for traversing and manipulating trees that is ideal for algorithms performed on ultra-large trees. (C) 2020 The Author. Published by Elsevier B.V.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Scalable Bootstrapping for Python']Python
    Birsinger, Peter
    Xia, Richard
    Fox, Armando
    PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 2441 - 2446
  • [2] DeepForest: A Python']Python package for RGB deep learning tree crown delineation
    Weinstein, Ben G.
    Marconi, Sergio
    Aubry-Kientz, Melaine
    Vincent, Gregoire
    Senyondo, Henry
    White, Ethan P.
    METHODS IN ECOLOGY AND EVOLUTION, 2020, 11 (12): : 1743 - 1751
  • [3] Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh - A Python']Python package)
    Christ, Maximilian
    Braun, Nils
    Neuffer, Julius
    Kempa-Liehr, Andreas W.
    NEUROCOMPUTING, 2018, 307 : 72 - 77
  • [4] OpenTree: A Python']Python Package for Accessing and Analyzing Data from the Open Tree of Life
    Mctavish, Emily Jane
    Sanchez-Reyes, Luna Luisa
    Holder, Mark T.
    SYSTEMATIC BIOLOGY, 2021, 70 (06) : 1295 - 1301
  • [5] COSMOS: Python']Python library for massively parallel workflows
    Gafni, Erik
    Luquette, Lovelace J.
    Lancaster, Alex K.
    Hawkins, Jared B.
    Jung, Jae-Yoon
    Souilmi, Yassine
    Wall, Dennis P.
    Tonellato, Peter J.
    BIOINFORMATICS, 2014, 30 (20) : 2956 - 2958
  • [6] SurvLIMEpy: A Python']Python package implementing SurvLIME
    Pachon-Garcia, Cristian
    Hernandez-Perez, Carlos
    Delicado, Pedro
    Vilaplana, Veronica
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [8] A Python']Python package for particle physics analyses
    Bevan, Adrian
    Charman, Thomas
    Hays, Jonathan
    23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018), 2019, 214
  • [9] tension: A Python']Python package for FORCE learning
    Liu, Lu Bin
    Losonczy, Attila
    Liao, Zhenrui
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (12)
  • [10] danRerLib: a Python']Python package for zebrafish transcriptomics
    Schwartz, Ashley, V
    Sant, Karilyn E.
    George, Uduak Z.
    BIOINFORMATICS ADVANCES, 2024, 4 (01):