A Python']Python package for particle physics analyses

被引:0
|
作者
Bevan, Adrian [1 ]
Charman, Thomas [1 ]
Hays, Jonathan [1 ]
机构
[1] Queen Mary Univ London, Sch Phys & Astron, GO Jones Bldg,327 Mile End Rd, London E1 4NS, England
基金
英国科学技术设施理事会;
关键词
NEURAL-NETWORKS; MODEL;
D O I
10.1051/epjconf/201921406027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
HIPSTER (Heavily Ionising Particle Standard Toolkit for Event Recognition) is an open source Python package designed to facilitate the use of TensorFlow in a high energy physics analysis context. The core functionality of the software is presented, with images from the MoEDAL experiment Nuclear Track Detectors (NTDs) serving as an example dataset. Convolutional neural networks are selected as the classification algorithm for this dataset and the process of training a variety of models with different hyper-parameters is detailed. Next the results are shown for the MoEDAL problem demonstrating the rich information output by HIPSTER that enables the user to probe the performance of their model in detail.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] PyLCP: A Python']Python package for computing laser cooling physics
    Eckel, Stephen
    Barker, Daniel S.
    Norrgard, Eric B.
    Scherschligt, Julia
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2022, 270
  • [2] GeospaceLAB: Python']Python package for managing and visualizing data in space physics
    Cai, Lei
    Aikio, Anita
    Kullen, Anita
    Deng, Yue
    Zhang, Yongliang
    Zhang, Shun-Rong
    Virtanen, Ilkka
    Vanhamaki, Heikki
    [J]. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 9
  • [3] Python']Python and HPC for High Energy Physics Data Analyses
    Sehrish, S.
    Kowalkowski, J.
    Paterno, M.
    Green, C.
    [J]. PROCEEDINGS OF PYHPC'17: 7TH WORKSHOP ON PYTHON FOR HIGH-PERFORMANCE AND SCIENTIFIC COMPUTING, 2017,
  • [4] Introducing InMoose, an integrated open source Python']Python package for multiomic analyses
    Colange, Maximilien
    Appe, Guillaume
    Nordor, Akpeli
    Behdenna, Abdelkader
    [J]. CANCER RESEARCH, 2023, 83 (07)
  • [5] Computational Physics with Python']Python
    Landau, Rubin H.
    Bordeianu, Cristian C.
    Paez, Manuel J.
    [J]. ICVL 2009 - PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON VIRTUAL LEARNING, 2009, : 112 - +
  • [6] Soil Physics with Python']Python
    Swingler, K.
    [J]. EUROPEAN JOURNAL OF SOIL SCIENCE, 2015, 66 (05) : 963 - 963
  • [7] orsum: a Python']Python package for filtering and comparing enrichment analyses using a simple principle
    Ozisik, Ozan
    Terezol, Morgane
    Baudot, Anais
    [J]. BMC BIOINFORMATICS, 2022, 23 (01)
  • [8] Using the COAsT Python']Python package to develop a standardised validation workflow for ocean physics models
    Byrne, David
    Polton, Jeff
    O'Dea, Enda
    Williams, Joanne
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2023, 16 (13) : 3749 - 3764
  • [9] SurvLIMEpy: A Python']Python package implementing SurvLIME
    Pachon-Garcia, Cristian
    Hernandez-Perez, Carlos
    Delicado, Pedro
    Vilaplana, Veronica
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237