The local ultraconvergence for high-degree Galerkin finite element methods

被引:1
|
作者
He, Wen-ming [1 ]
Cui, Junzhi [2 ]
Shen, Jiangman [1 ]
机构
[1] Wenzhou Univ, Dept Math, Wenzhou 320035, Zhejiang, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Elliptic problem; Ultraconvergence; Derivative recovery operator; Displacement; Derivative; SUPERCONVERGENT PATCH RECOVERY; ERROR; ESTIMATORS; MESHES;
D O I
10.1016/j.jmaa.2016.08.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the local ultraconvergence of k-degree (k >= 3) finite element methods for the second order elliptic boundary value problem with constant coefficients over a family of uniform rectangular/triangular meshes 77, on a bounded rectangular domain D. The k-degree finite element estimates are developed for the Green's function and its derivatives. They are employed to explore the relationship among dist(x, partial derivative D), dist(x, M) and the ultraconvergence of k-degree finite element methods at vertex x, where M is the set of corners of D. Numerical examples are conducted to demonstrate our theoretical results. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:62 / 86
页数:25
相关论文
共 50 条
  • [21] Weak Galerkin finite element methods for Sobolev equation
    Gao, Fuzheng
    Cui, Jintao
    Zhao, Guoqun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 : 188 - 202
  • [22] Stabilization mechanisms in discontinuous Galerkin finite element methods
    Brezzi, F.
    Cockburn, B.
    Marini, L. D.
    Suli, E.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) : 3293 - 3310
  • [23] Weak Galerkin finite element methods with or without stabilizers
    Wang, Xiaoshen
    Ye, Xiu
    Zhang, Shangyou
    NUMERICAL ALGORITHMS, 2021, 88 (03) : 1361 - 1381
  • [24] WEAK GALERKIN FINITE ELEMENT METHODS ON POLYTOPAL MESHES
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2015, 12 (01) : 31 - 53
  • [25] General principles of superconvergence in Galerkin finite element methods
    Wahlbin, LB
    FINITE ELEMENT METHODS: SUPERCONVERGENCE, POST-PROCESSING, AND A POSTERIORI ESTIMATES, 1998, 196 : 269 - 285
  • [26] Curved elements in weak Galerkin finite element methods
    Li, Dan
    Wang, Chunmei
    Wang, Junping
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 153 : 20 - 32
  • [27] ANALYSIS OF WEAK GALERKIN FINITE ELEMENT METHODS WITH SUPERCLOSENESS
    Al-taweel, A. H. M. E. D.
    Hussain, S. A. Q. I. B.
    Wang, X. I. A. O. S. H. E. N.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (06) : 761 - 776
  • [28] GALERKIN FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS
    THOMEE, V
    LECTURE NOTES IN MATHEMATICS, 1984, 1054 : 1 - 235
  • [29] Weak Galerkin Finite Element Methods for Parabolic Equations
    Li, Qiaoluan H.
    Wang, Junping
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (06) : 2004 - 2024
  • [30] Numerical solutions of systems with (p, δ)-structure using local discontinuous Galerkin finite element methods
    Kroener, Dietmar
    Ruzicka, Michael
    Toulopoulos, Ioannis
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 76 (11) : 855 - 874