The local ultraconvergence for high-degree Galerkin finite element methods

被引:1
|
作者
He, Wen-ming [1 ]
Cui, Junzhi [2 ]
Shen, Jiangman [1 ]
机构
[1] Wenzhou Univ, Dept Math, Wenzhou 320035, Zhejiang, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Elliptic problem; Ultraconvergence; Derivative recovery operator; Displacement; Derivative; SUPERCONVERGENT PATCH RECOVERY; ERROR; ESTIMATORS; MESHES;
D O I
10.1016/j.jmaa.2016.08.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the local ultraconvergence of k-degree (k >= 3) finite element methods for the second order elliptic boundary value problem with constant coefficients over a family of uniform rectangular/triangular meshes 77, on a bounded rectangular domain D. The k-degree finite element estimates are developed for the Green's function and its derivatives. They are employed to explore the relationship among dist(x, partial derivative D), dist(x, M) and the ultraconvergence of k-degree finite element methods at vertex x, where M is the set of corners of D. Numerical examples are conducted to demonstrate our theoretical results. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:62 / 86
页数:25
相关论文
共 50 条
  • [41] Generalized weak Galerkin finite element methods for biharmonic equations
    Li, Dan
    Wang, Chunmei
    Wang, Junping
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 434
  • [42] Discrete maximal parabolic regularity for Galerkin finite element methods
    Leykekhman, Dmitriy
    Vexler, Boris
    NUMERISCHE MATHEMATIK, 2017, 135 (03) : 923 - 952
  • [43] Optimal Strong Error Estimates for Galerkin Finite Element Methods
    Kruse, Raphael
    STRONG AND WEAK APPROXIMATION OF SEMILINEAR STOCHASTIC EVOLUTION EQUATIONS, 2014, 2093 : 51 - 84
  • [44] GALERKIN FINITE ELEMENT METHODS FOR SEMILINEAR ELLIPTIC DIFFERENTIAL INCLUSIONS
    Beyn, Wolf-Juergen
    Rieger, Janosch
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (02): : 295 - 312
  • [45] Discrete maximal parabolic regularity for Galerkin finite element methods
    Dmitriy Leykekhman
    Boris Vexler
    Numerische Mathematik, 2017, 135 : 923 - 952
  • [46] Adaptive Galerkin finite element methods for partial differential equations
    Rannacher, R
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 128 (1-2) : 205 - 233
  • [47] REDUCED INTEGRATION IN FINITE-ELEMENT GALERKIN METHODS FOR RODS
    KLOHN, C
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1986, 66 (05): : T310 - T312
  • [48] Developing weak Galerkin finite element methods for the wave equation
    Huang, Yunqing
    Li, Jichun
    Li, Dan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (03) : 868 - 884
  • [49] Port-Hamiltonian discontinuous Galerkin finite element methods
    Kumar, Nishant
    van der Vegt, J. J. W.
    Zwart, H. J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [50] Parallel iterative discontinuous Galerkin finite-element methods
    Aharoni, D
    Barak, A
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 247 - 254