Complex hyperbolic (3, n, ∞) triangle groups

被引:0
|
作者
Xu, Mengmeng [1 ]
Wang, Jieyan [1 ]
Xie, Baohua [1 ]
机构
[1] Hunan Univ, Sch Math, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex hyperbolic geometry; Complex hyperbolic triangle groups; FLEXIBILITY; POLYHEDRA;
D O I
10.1016/j.jmaa.2020.124409
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n >= 5 be a positive integer. A complex hyperbolic (3, n, infinity) triangle group is a representation from the hyperbolic (3, n, infinity) triangle group into the holomorphic isometry group of complex hyperbolic plane, which maps the generators to complex reflections fixing complex lines. In this paper, we show that a complex hyperbolic (3, n, infinity) triangle group < I-1, I-2, I-3 > is discrete and faithful if and only if I1I3I2I3 is not elliptic. Our result answers a conjecture of Schwartz for complex hyperbolic (3, n, infinity) triangle groups. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条