Complex hyperbolic (3, n, ∞) triangle groups

被引:0
|
作者
Xu, Mengmeng [1 ]
Wang, Jieyan [1 ]
Xie, Baohua [1 ]
机构
[1] Hunan Univ, Sch Math, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex hyperbolic geometry; Complex hyperbolic triangle groups; FLEXIBILITY; POLYHEDRA;
D O I
10.1016/j.jmaa.2020.124409
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n >= 5 be a positive integer. A complex hyperbolic (3, n, infinity) triangle group is a representation from the hyperbolic (3, n, infinity) triangle group into the holomorphic isometry group of complex hyperbolic plane, which maps the generators to complex reflections fixing complex lines. In this paper, we show that a complex hyperbolic (3, n, infinity) triangle group < I-1, I-2, I-3 > is discrete and faithful if and only if I1I3I2I3 is not elliptic. Our result answers a conjecture of Schwartz for complex hyperbolic (3, n, infinity) triangle groups. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] COMPLEX OF RELATIVELY HYPERBOLIC GROUPS
    Pal, Abhijit
    Paul, Suman
    GLASGOW MATHEMATICAL JOURNAL, 2019, 61 (03) : 657 - 672
  • [32] Hyperbolic generalized triangle groups, property (T) and finite simple quotients
    Caprace, Pierre-Emmanuel
    Conder, Marston
    Kaluba, Marek
    Witzel, Stefan
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (04): : 3577 - 3637
  • [33] Subgroups of hyperbolic groups, finiteness properties and complex hyperbolic lattices
    Isenrich, Claudio Llosa
    Py, Pierre
    INVENTIONES MATHEMATICAE, 2023, 235 (1) : 233 - 254
  • [34] Subgroups of hyperbolic groups, finiteness properties and complex hyperbolic lattices
    Claudio Llosa Isenrich
    Pierre Py
    Inventiones mathematicae, 2024, 235 : 233 - 254
  • [35] HYPERBOLIC COMPLEX YANG-BAXTER EQUATION AND HYPERBOLIC COMPLEX MULTIPARAMETRIC QUANTUM GROUPS
    WU, YB
    ZHONG, ZZ
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (11) : 2171 - 2177
  • [36] The Limit Set for Discrete Complex Hyperbolic Groups
    Cano, Angel
    Liu, Bingyuan
    Lopez, Marlon M.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2017, 66 (03) : 927 - 948
  • [37] Pinching Surface Groups in Complex Hyperbolic Plane
    Igor Belegradek
    Geometriae Dedicata, 2003, 97 : 45 - 54
  • [38] REPRESENTATIONS OF SURFACE GROUPS IN COMPLEX HYPERBOLIC SPACE
    TOLEDO, D
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1989, 29 (01) : 125 - 133
  • [39] Discreteness and Convergence of Complex Hyperbolic Isometry Groups
    Fu, Xi
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [40] Discreteness of ultra-parallel complex hyperbolic triangle groups of type [m1,m2,0]
    Monaghan, Andrew
    Parker, John R.
    Pratoussevitch, Anna
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 100 (02): : 545 - 567