Complex hyperbolic triangle groups of type [m,m,0;n1,n2,2]

被引:0
|
作者
Povall, Sam [1 ]
Pratoussevitch, Anna [2 ]
机构
[1] Univ Liverpool, Sch Engn, Liverpool L69, England
[2] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, England
关键词
Complex hyperbolic geometry; Triangle groups;
D O I
10.1007/s10711-025-00981-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study discreteness of complex hyperbolic triangle groups of type [m, m, 0; n1, n2, 2], i.e. groups of isometries of the complex hyperbolic plane generated by three complex reflections of orders n1, n2, 2 in complex geodesics with pairwise distances m, m, 0. For fixed m, the parameter space of such groups is of real dimension one. We determine the possible orders for n1 and n2 and also intervals in the parameter space that correspond to discrete and non-discrete triangle groups.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Notes on complex hyperbolic triangle groups of type (m, n, ∞)
    Sun, Li-Jie
    ADVANCES IN GEOMETRY, 2017, 17 (02) : 191 - 202
  • [2] COMPLEX HYPERBOLIC TRIANGLE GROUPS OF TYPE [m, m, 0; 3, 3, 2]
    Povall, Sam
    Pratoussevitch, Anna
    CONFORMAL GEOMETRY AND DYNAMICS, 2020, 24 : 51 - 67
  • [3] Complex hyperbolic triangle groups of type [m,m,0;n1,n2,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[m,m,0;n_1,n_2,2]$$\end{document}
    Sam Povall
    Anna Pratoussevitch
    Geometriae Dedicata, 2025, 219 (1)
  • [5] Discreteness of ultra-parallel complex hyperbolic triangle groups of type [m1,m2,0]
    Monaghan, Andrew
    Parker, John R.
    Pratoussevitch, Anna
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 100 (02): : 545 - 567
  • [6] Geometrical Measurement of Central Tumor Location in cT1N0M0 NSCLC Predicts N1 but Not N2 Upstaging
    Sanz-Santos, Jose
    Martinez-Palau, Mireia
    Jaen, Angels
    Rami-Porta, Ramon
    Barreiro, Bienvenido
    Call, Sergi
    Obiols, Carme
    Manuel Gonzalez, Jose
    Angel De Marcos, Jose
    Ysamat, Montserrat
    Canales, Lydia
    Serra, Mireia
    Belda, Josep
    ANNALS OF THORACIC SURGERY, 2021, 111 (04): : 1190 - 1197
  • [7] Complex hyperbolic (3, n, ∞) triangle groups
    Xu, Mengmeng
    Wang, Jieyan
    Xie, Baohua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 492 (01)
  • [8] Non-Discrete Complex Hyperbolic Triangle Groups of Type (n, n, ∞; k)
    Kamiya, Shigeyasu
    Parker, John R.
    Thompson, James M.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (02): : 329 - 338
  • [9] A study of the 15-μm quasars in the ELAIS N1 and N2 fields
    Afonso-Luis, A
    Hatziminaoglou, E
    Pérez-Fournon, I
    González-Solares, EA
    Rowan-Robinson, M
    Vaccari, M
    Lari, C
    Serjeant, S
    Oliver, S
    Hernán-Caballero, A
    Montenegro-Montes, FM
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 354 (04) : 961 - 970