Complex hyperbolic (3, n, ∞) triangle groups

被引:0
|
作者
Xu, Mengmeng [1 ]
Wang, Jieyan [1 ]
Xie, Baohua [1 ]
机构
[1] Hunan Univ, Sch Math, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Complex hyperbolic geometry; Complex hyperbolic triangle groups; FLEXIBILITY; POLYHEDRA;
D O I
10.1016/j.jmaa.2020.124409
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n >= 5 be a positive integer. A complex hyperbolic (3, n, infinity) triangle group is a representation from the hyperbolic (3, n, infinity) triangle group into the holomorphic isometry group of complex hyperbolic plane, which maps the generators to complex reflections fixing complex lines. In this paper, we show that a complex hyperbolic (3, n, infinity) triangle group < I-1, I-2, I-3 > is discrete and faithful if and only if I1I3I2I3 is not elliptic. Our result answers a conjecture of Schwartz for complex hyperbolic (3, n, infinity) triangle groups. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] COMPLEX HYPERBOLIC (3, 3, n) TRIANGLE GROUPS
    Parker, John R.
    Wang, Jieyan
    Xie, Baohua
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 280 (02) : 433 - 453
  • [2] Notes on complex hyperbolic triangle groups of type (m, n, ∞)
    Sun, Li-Jie
    ADVANCES IN GEOMETRY, 2017, 17 (02) : 191 - 202
  • [3] Traces in Complex Hyperbolic Triangle Groups
    Anna Pratoussevitch
    Geometriae Dedicata, 2005, 111 : 159 - 185
  • [4] Traces in complex hyperbolic triangle groups
    Pratoussevitch, A
    GEOMETRIAE DEDICATA, 2005, 111 (01) : 159 - 185
  • [5] COMPLEX HYPERBOLIC IDEAL TRIANGLE GROUPS
    GOLDMAN, WM
    PARKER, JR
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1992, 425 : 71 - 86
  • [6] ARITHMETICITY OF COMPLEX HYPERBOLIC TRIANGLE GROUPS
    Stover, Matthew
    PACIFIC JOURNAL OF MATHEMATICS, 2012, 257 (01) : 243 - 256
  • [7] NOTES ON COMPLEX HYPERBOLIC TRIANGLE GROUPS
    Kamiya, Shigeyasu
    Parker, John R.
    Thompson, James M.
    CONFORMAL GEOMETRY AND DYNAMICS, 2010, 14 : 202 - 218
  • [8] Non-Discrete Complex Hyperbolic Triangle Groups of Type (n, n, ∞; k)
    Kamiya, Shigeyasu
    Parker, John R.
    Thompson, James M.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (02): : 329 - 338
  • [9] On a family of triangle groups in complex hyperbolic geometry
    Han, Minghua
    Xie, Baohua
    Xie, Dong
    TOPOLOGY AND ITS APPLICATIONS, 2017, 230 : 1 - 15
  • [10] Census of the Complex Hyperbolic Sporadic Triangle Groups
    Deraux, Martin
    Parker, John R.
    Paupert, Julien
    EXPERIMENTAL MATHEMATICS, 2011, 20 (04) : 467 - 486