Axiomatic characterization of the interval function of a bipartite graph

被引:3
|
作者
Changat, Manoj [1 ]
Nezhad, Ferdoos Hossein [1 ]
Narayanan, Narayanan [2 ]
机构
[1] Univ Kerala, Dept Futures Studies, Trivandrum 695581, Kerala, India
[2] IIT Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
TRANSIT FUNCTION; BETWEENNESS; FINITE;
D O I
10.1016/j.dam.2018.07.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The axiomatic study on the interval function, induced path function of a connected graph is a well-known area in metric graph theory. In this paper, we present a new axiom: (bp) for any x, y, z is an element of V, R(x, y) = {x, y} double right arrow y is an element of R(x, z) or x is an element of R(y, z). We study axiom (bp) on the interval function and the induced path function of a connected, simple and finite graph. We present axiomatic characterizations of the interval function of bipartite graphs and complete bipartite graphs. We extend the characterization of the interval function of bipartite graphs to arbitrary bipartite graphs including disconnected bipartite graphs. In addition, we present an axiomatic characterization of the interval function of a forest. Finally, we present an axiomatic characterization of the induced path function of a tree or a 4-cycle using the axiom (bp). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 28
页数:10
相关论文
共 50 条
  • [1] Axiomatic Characterization of the Interval Function of a Bipartite Graph
    Changat, Manoj
    Nezhad, Ferdoos Hossein
    Narayanan, Narayanan
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, 2017, 10156 : 96 - 106
  • [2] Axiomatic characterization of the interval function of a graph
    Mulder, Henry Martyn
    Nebesky, Ladislav
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) : 1172 - 1185
  • [3] Axiomatic characterization of the interval function of a block graph
    Balakrishnan, Kannan
    Changat, Manoj
    Lakshmikuttyamma, Anandavally K.
    Mathew, Joseph
    Mulder, Henry Martyn
    Narasimha-Shenoi, Prasanth G.
    Narayanan, N.
    DISCRETE MATHEMATICS, 2015, 338 (06) : 885 - 894
  • [4] The axiomatic characterization of the interval function of distance hereditary graphs
    Changat, Manoj
    Kamalolbhavan-Sheela, Lekshmi Kamal
    Narasimha-Shenoi, Prasanth G.
    DISCRETE APPLIED MATHEMATICS, 2024, 350 : 62 - 70
  • [5] A CHARACTERIZATION OF THE INTERVAL FUNCTION OF A CONNECTED GRAPH
    NEBESKY, L
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1994, 44 (01) : 173 - 178
  • [6] Axiomatic Characterization of the Toll Walk Function of Some Graph Classes
    Sheela, Lekshmi Kamal K.
    Changat, Manoj
    Peterin, Iztok
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2023, 2023, 13947 : 427 - 446
  • [7] Axiomatic Characterization of the Toll Walk Function of Some Graph Classes
    Sheela, Lekshmi Kamal K.
    Changat, Manoj
    Peterin, Iztok
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023, 13947 LNCS : 427 - 446
  • [8] Axiomatic characterization of the interval function of partial cubes and partial Hamming graphs
    Jacob, Jeny
    Changat, Manoj
    Sheela, Lekshmi Kamal K.
    Abhirami, R. S.
    Amrutha, U. A.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (01) : 23 - 28
  • [9] Axiomatic characterization of the median and antimedian function on a complete graph minus a matching
    Changat, Manoj
    Lekha, Divya Sindhu
    Mohandas, Shilpa
    Mulder, Henry Martyn
    Subhamathi, Ajitha R.
    DISCRETE APPLIED MATHEMATICS, 2017, 228 : 50 - 59
  • [10] A characterization of the resonance graph of an outerplane bipartite graph
    Che, Zhongyuan
    DISCRETE APPLIED MATHEMATICS, 2019, 258 : 264 - 268