On the rogue waves propagation in non-Maxwellian complex space plasmas

被引:37
|
作者
El-Tantawy, S. A. [1 ]
El-Awady, E. I. [1 ]
Tribeche, M. [2 ]
机构
[1] Port Said Univ, Fac Sci, Dept Phys, Port Said 42521, Egypt
[2] Univ Bab Ezzouar, USTHB, Fac Phys, Plasma Phys Grp,Theoret Phys Lab, Algiers 16111, Algeria
关键词
ELECTROSTATIC SOLITARY STRUCTURES; ION-ACOUSTIC SOLITONS; FREAK WAVES; DOUBLE-LAYERS; ENERGY; FLOW;
D O I
10.1063/1.4935916
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The implications of the non-Maxwellian electron distributions (nonthermal/or suprathermal/or non-extensive distributions) are examined on the dust-ion acoustic (DIA) rogue/freak waves in a dusty warm plasma. Using a reductive perturbation technique, the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The latter is used to study the nonlinear evolution of modulationally unstable DIA wavepackets and to describe the rogue waves (RWs) propagation. Rogue waves are large-amplitude short-lived wave groups, routinely observed in space plasmas. The possible region for the rogue waves to exist is defined precisely for typical parameters of space plasmas. It is shown that the RWs strengthen for decreasing plasma nonthermality and increasing superthermality. For nonextensive electrons, the RWs amplitude exhibits a bit more complex behavior, depending on the entropic index q. Moreover, our numerical results reveal that the RWs exist with all values of the ion-to-electron temperature ratio sigma for nonthermal and superthermal distributions and there is no limitation for the freak waves to propagate in both two distributions in the present plasma system. But, for nonextensive electron distribution, the bright- and dark-type waves can propagate in this case, which means that there is a limitation for the existence of freak waves. Our systematic investigation should be useful in understanding the properties of DIA solitary waves that may occur in non-Maxwellian space plasmas. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Anomalous resistivity in non-Maxwellian plasmas
    Petkaki, P
    Watt, CEJ
    Horne, RB
    Freeman, MP
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A12)
  • [22] PROBE DIAGNOSTICS OF NON-MAXWELLIAN PLASMAS
    GODYAK, VA
    PIEJAK, RB
    ALEXANDROVICH, BM
    JOURNAL OF APPLIED PHYSICS, 1993, 73 (08) : 3657 - 3663
  • [23] Nonlinear Landau damping of high frequency waves in non-Maxwellian plasmas
    Qureshi, M. N. S.
    Sehar, Sumbul
    Shi, J. K.
    Shah, H. A.
    CHINESE PHYSICS B, 2013, 22 (11)
  • [24] Non-Maxwellian laser produced Plasmas
    Rosmej, FB
    Calisti, A
    Talin, B
    Stamm, R
    Hoffmann, DHH
    Geissel, M
    Faenov, Y
    Pikuz, TA
    Skobelev, IY
    ATOMIC PROCESSES IN PLASMAS, 2002, 635 : 101 - 110
  • [25] Whistler instability in non-Maxwellian plasmas
    Zaheer, S.
    Murtaza, G.
    PHYSICA SCRIPTA, 2010, 81 (03)
  • [26] Nonlinear Landau damping of high frequency waves in non-Maxwellian plasmas
    M.N.S.Qureshi
    Sumbul Sehar
    J.K.Shi
    H.A.Shah
    Chinese Physics B, 2013, (11) : 389 - 393
  • [27] RESONANCE CONES IN NON-MAXWELLIAN PLASMAS
    OELERICHHILL, G
    PIEL, A
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (02): : 275 - 285
  • [28] An effective approach to implement the Maxwellian and non-Maxwellian distributions in the fluid simulation of solitary waves in plasmas
    Lotekar, Ajay
    Kakad, Amar
    Kakad, Bharati
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 68 : 125 - 138
  • [29] Stimulated Raman scattering in non-Maxwellian plasmas
    Bychenkov, VY
    Rozmus, W
    Tikhonchuk, VT
    PHYSICS OF PLASMAS, 1997, 4 (05) : 1481 - 1483
  • [30] Dust particles charging in non-Maxwellian plasmas
    IEEE Int Conf Plasma Sci, (101):