Notch Filters for Port-Hamiltonian Systems

被引:2
|
作者
Dirksz, D. A. [1 ]
Scherpen, J. M. A. [2 ]
van der Schaft, A. J. [2 ]
Steinbuch, M. [3 ]
机构
[1] Irmato Ind Solut, NL-9203 ZN Drachten, Netherlands
[2] Univ Groningen, Fac Math & Nat Sci, NL-9747 AG Groningen, Netherlands
[3] Eindhoven Univ Technol, Fac Mech Engn, NL-5612 AJ Eindhoven, Netherlands
关键词
Control design; nonlinear control systems; nonlinear dynamical systems; NONLINEAR INTERNAL-MODELS; OUTPUT REGULATION; INTERCONNECTION; DESIGN;
D O I
10.1109/TAC.2015.2390552
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many powerful tools exist for control design in the frequency domain, but are theoretically only justified for linear systems. On the other hand, nonlinear control deals with control design methodologies that are theoretically justified for a larger and more realistic class of systems, but primarily dealing with stability and to a lesser extent with performance. In this technical note a standard linear notch filter is modeled in the port-Hamiltonian (PH) framework, thereby proving that the notch filter is a passive system. The notch filter can then be interconnected with any other (nonlinear) PH system, while preserving the overall passivity property. By doing so, we can combine a frequency-based control method to improve performance, the notch filter, with the nonlinear control methodology of passivity-based control.
引用
下载
收藏
页码:2440 / 2445
页数:6
相关论文
共 50 条
  • [21] On Energy Conversion in Port-Hamiltonian Systems
    van der Schaft, Arjan
    Jeltsema, Dimitri
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 2421 - 2427
  • [22] Discrete stochastic port-Hamiltonian systems
    Cordoni, Francesco Giuseppe
    Di Persio, Luca
    Muradore, Riccardo
    AUTOMATICA, 2022, 137
  • [23] Learning port-Hamiltonian Systems—Algorithms
    V. Salnikov
    A. Falaize
    D. Lozienko
    Computational Mathematics and Mathematical Physics, 2023, 63 : 126 - 134
  • [24] Decomposition of Linear Port-Hamiltonian Systems
    Hoeffner, K.
    Guay, M.
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3686 - 3691
  • [25] Finite element hybridization of port-Hamiltonian systems
    Brugnoli, Andrea
    Rashad, Ramy
    Zhang, Yi
    Stramigioli, Stefano
    Applied Mathematics and Computation, 2025, 498
  • [26] Bounded stabilisation of stochastic port-Hamiltonian systems
    Satoh, Satoshi
    Saeki, Masami
    INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (08) : 1573 - 1582
  • [27] Port-Hamiltonian Systems Theory: An Introductory Overview
    van der Schaft, Arjan
    Jeltsema, Dimitri
    FOUNDATIONS AND TRENDS IN SYSTEMS AND CONTROL, 2014, 1 (2-3): : I - +
  • [28] Discrete port-Hamiltonian systems: mixed interconnections
    Talasila, Viswanath
    Clemente-Gallardo, J.
    van der Schaft, A. J.
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 5656 - 5661
  • [29] Learning port-Hamiltonian Systems-Algorithms
    Salnikov, V.
    Falaize, A.
    Lozienko, D.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2023, 63 (01) : 126 - 134
  • [30] Optimal control of thermodynamic port-Hamiltonian Systems
    Maschke, Bernhard
    Philipp, Friedrich
    Schaller, Manuel
    Worthmann, Karl
    Faulwasser, Timm
    IFAC PAPERSONLINE, 2022, 55 (30): : 55 - 60