Notch Filters for Port-Hamiltonian Systems

被引:2
|
作者
Dirksz, D. A. [1 ]
Scherpen, J. M. A. [2 ]
van der Schaft, A. J. [2 ]
Steinbuch, M. [3 ]
机构
[1] Irmato Ind Solut, NL-9203 ZN Drachten, Netherlands
[2] Univ Groningen, Fac Math & Nat Sci, NL-9747 AG Groningen, Netherlands
[3] Eindhoven Univ Technol, Fac Mech Engn, NL-5612 AJ Eindhoven, Netherlands
关键词
Control design; nonlinear control systems; nonlinear dynamical systems; NONLINEAR INTERNAL-MODELS; OUTPUT REGULATION; INTERCONNECTION; DESIGN;
D O I
10.1109/TAC.2015.2390552
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many powerful tools exist for control design in the frequency domain, but are theoretically only justified for linear systems. On the other hand, nonlinear control deals with control design methodologies that are theoretically justified for a larger and more realistic class of systems, but primarily dealing with stability and to a lesser extent with performance. In this technical note a standard linear notch filter is modeled in the port-Hamiltonian (PH) framework, thereby proving that the notch filter is a passive system. The notch filter can then be interconnected with any other (nonlinear) PH system, while preserving the overall passivity property. By doing so, we can combine a frequency-based control method to improve performance, the notch filter, with the nonlinear control methodology of passivity-based control.
引用
下载
收藏
页码:2440 / 2445
页数:6
相关论文
共 50 条
  • [31] Port-Hamiltonian Systems: Structure Recognition and Applications
    Salnikov, V.
    PROGRAMMING AND COMPUTER SOFTWARE, 2024, 50 (02) : 197 - 201
  • [32] Robust integral action of port-Hamiltonian systems
    Ferguson, Joel
    Donaire, Alejandro
    Ortega, Romeo
    Middleton, Richard H.
    IFAC PAPERSONLINE, 2018, 51 (03): : 181 - 186
  • [33] Exergetic port-Hamiltonian systems: modelling basics
    Lohmayer, Markus
    Kotyczka, Paul
    Leyendecker, Sigrid
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2021, 27 (01) : 489 - 521
  • [34] A Simple Robust Controller for Port-Hamiltonian Systems
    Paunonen, Lassi
    Le Gorrec, Yann
    Ramirez, Hector
    IFAC PAPERSONLINE, 2018, 51 (03): : 92 - 96
  • [35] Linear port-Hamiltonian DAE systems revisited
    van der Schaft, Arjan
    Mehrmann, Volker
    SYSTEMS & CONTROL LETTERS, 2023, 177
  • [36] On port-Hamiltonian modeling and control of quaternion systems
    Fujimoto, Kenji
    Takeuchi, Tomoya
    Matsumoto, Yuki
    IFAC PAPERSONLINE, 2015, 48 (13): : 39 - 44
  • [37] Geometric spatial reduction for port-Hamiltonian systems
    Ngoc Minh Trang Vu
    Lefevre, Laurent
    Maschke, Bernhard
    SYSTEMS & CONTROL LETTERS, 2019, 125 : 1 - 8
  • [38] Conditions on shifted passivity of port-Hamiltonian systems
    Monshizadeh, Nima
    Monshizadeh, Pooya
    Ortega, Romeo
    van der Schaft, Arjan
    SYSTEMS & CONTROL LETTERS, 2019, 123 : 55 - 61
  • [39] Linear Port-Hamiltonian Systems Are Generically Controllable
    Kirchhoff, Jonas
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (06) : 3220 - 3222
  • [40] Generic observability for port-Hamiltonian descriptor systems
    Kirchhoff, Jonas
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2024, 36 (04) : 831 - 873