Engineering transglycosidase activity into a GH51 α-L-arabinofuranosidase

被引:22
|
作者
Arab-Jaziri, Faten [1 ,2 ,3 ,4 ,5 ]
Bissaro, Bastien [1 ,2 ,3 ,4 ]
Dion, Michel [6 ]
Saurel, Olivier [1 ,2 ,7 ]
Harrison, David [1 ,2 ,3 ,4 ]
Ferreira, Fernando [1 ,2 ,3 ,4 ]
Milon, Alain [1 ,2 ,7 ]
Tellier, Charles [6 ]
Faure, Regis [1 ,2 ,3 ,4 ]
O'Donohue, Michael J. [1 ,2 ,3 ,4 ]
机构
[1] Univ Toulouse, F-31077 Toulouse, France
[2] INP, UPS, INSA, F-31077 Toulouse, France
[3] INRA, UMR792, F-31400 Toulouse, France
[4] CNRS, LISBP UMR5504, F-31400 Toulouse, France
[5] Agence Environm & Maitrise Energie, F-49004 Angers 01, France
[6] Univ Nantes, UFIP FRE CNRS 3478, Fac Sci & Tech, F-44322 Nantes 03, France
[7] Inst Pharmacol & Biol Struct, CNRS, IPBS UMR 5089, Toulouse, France
关键词
XYLOGLUCAN ENDO-TRANSGLYCOSYLASES; BETA-N-ACETYLGLUCOSAMINIDASE; TRANSFER DIFFERENCE NMR; GLYCOSIDE HYDROLASE; CHEMOENZYMATIC SYNTHESIS; ENZYMATIC-SYNTHESIS; DIRECTED EVOLUTION; LIGAND-BINDING; OLIGOSACCHARIDES; ARABINOXYLAN;
D O I
10.1016/j.nbt.2013.04.002
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Directed evolution was applied to the alpha-L-arabinofuranosidase from Thermobacillus xylanilyticus to confer better transglycosylation ability, particularly for the synthesis of benzyl alpha-L-arabinofuranosyl-(1,2)-alpha-D-xylopyranoside, starting from p-nitrophenyl alpha-L-arabinofuranoside (donor) and benzyl alpha-D-xylopyranoside (acceptor). The aim was to obtain mutants displaying both lower hydrolytic and greater transglycosylation activities to favour the stable production of the target disaccharide. The implementation of a simple chromogenic screen ultimately provided three mutant enzymes whose properties correspond to those sought after. These all displayed lowered hydrolytic activity and conserved or slightly improved transfer activity, while one of them also displayed lowered secondary hydrolysis of the transglycosylation product. DNA sequence analysis of the mutants revealed between three and seven point mutations and biochemical analysis combined with STD-NMR experiments indicated that distinct molecular mechanisms were active among the three mutants.
引用
收藏
页码:536 / 544
页数:9
相关论文
共 50 条
  • [41] Identification of a GH62 α-l-arabinofuranosidase specific for arabinoxylan produced by Penicillium chrysogenum
    Sakamoto, Tatsuji
    Ogura, Atsuhiro
    Inui, Misako
    Tokuda, Sayaka
    Hosokawa, Sachiko
    Ihara, Hideshi
    Kasai, Naoya
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 90 (01) : 137 - 146
  • [42] Identification of a GH62 α-l-arabinofuranosidase specific for arabinoxylan produced by Penicillium chrysogenum
    Tatsuji Sakamoto
    Atsuhiro Ogura
    Misako Inui
    Sayaka Tokuda
    Sachiko Hosokawa
    Hideshi Ihara
    Naoya Kasai
    Applied Microbiology and Biotechnology, 2011, 90 : 137 - 146
  • [43] Immobilization of α-L-arabinofuranosidase on chitin and chitosan
    Spagna, G
    Andreani, F
    Salatelli, E
    Romagnoli, D
    Pifferi, PG
    PROCESS BIOCHEMISTRY, 1998, 33 (01) : 57 - 62
  • [44] Crystal Structures of Glycoside Hydrolase Family 51 α-L-Arabinofuranosidase from Thermotoga maritima
    Im, Do-Hyun
    Kimura, Kei-ichi
    Hayasaka, Fumitaka
    Tanaka, Tomonari
    Noguchi, Masato
    Kobayashi, Atsushi
    Shoda, Shin-ichiro
    Miyazaki, Kentaro
    Wakagi, Takayoshi
    Fushinobu, Shinya
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2012, 76 (02) : 423 - 428
  • [45] Cloning and Characterization of a Ginsenoside-Hydrolyzingα-L-Arabinofuranosidase,CaAraf51, FromCellulosimicrobium aquatileLyp51
    Zuo, Sha-Sha
    Wang, Yu-Chen
    Zhu, Ling
    Zhao, Jiang-Yuan
    Li, Ming-Gang
    Han, Xiu-Lin
    Wen, Meng-Liang
    CURRENT MICROBIOLOGY, 2020, 77 (10) : 2783 - 2791
  • [46] Cell wall modifications in Arabidopsis plants with altered α-L-arabinofuranosidase activity
    Montes, Ricardo A. Chavez
    Ranocha, Philippe
    Martinez, Yves
    Minic, Zoran
    Jouanin, Lise
    Marquis, Melanie
    Saulnier, Luc
    Fulton, Lynette M.
    Cobbett, Christopher S.
    Bitton, Frederique
    Renou, Jean-Pierre
    Jauneau, Alain
    Goffner, Deborah
    PLANT PHYSIOLOGY, 2008, 147 (01) : 63 - 77
  • [47] Bifidobacterial GH146 β-L-arabinofuranosidase for the removal of β1,3-L-arabinofuranosides on plant glycans
    Fujita, Kiyotaka
    Tsunomachi, Hanako
    Lixia, Pan
    Maruyama, Shun
    Miyake, Masayuki
    Dakeshita, Aimi
    Kitahara, Kanefumi
    Tanaka, Katsunori
    Ito, Yukishige
    Ishiwata, Akihiro
    Fushinobu, Shinya
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2024, 108 (01)
  • [48] α-L-Arabinofuranosidase as an Orthogonal Enzyme for Human Cells
    Kaneko, Ryosuke
    Oda, Tsuyoshi
    Yoshida, Ryosuke
    Tateishi, Chuya
    Tanito, Kenta
    Nii, Teruki
    Kishimura, Akihiro
    Kamiya, Noriho
    Mori, Takeshi
    Katayama, Yoshiki
    CHEMISTRY LETTERS, 2021, 50 (08) : 1493 - 1495
  • [49] Coexpression of α-l-arabinofuranosidase and β-glucosidase in Saccharomyces cerevisiae
    Zietsman, Anscha J. J.
    de Klerk, Daniel
    van Rensburg, Pierre
    FEMS YEAST RESEARCH, 2011, 11 (01) : 88 - 103
  • [50] A family 51 α-L-arabinofuranosidase from Penicillium purpurogenum:: purification, properties and amino acid sequence
    Fritz, Macarena
    Ravanal, Maria Cristina
    Braet, Christophe
    Eyzaguirre, Jaime
    MYCOLOGICAL RESEARCH, 2008, 112 : 933 - 942