Engineering transglycosidase activity into a GH51 α-L-arabinofuranosidase

被引:22
|
作者
Arab-Jaziri, Faten [1 ,2 ,3 ,4 ,5 ]
Bissaro, Bastien [1 ,2 ,3 ,4 ]
Dion, Michel [6 ]
Saurel, Olivier [1 ,2 ,7 ]
Harrison, David [1 ,2 ,3 ,4 ]
Ferreira, Fernando [1 ,2 ,3 ,4 ]
Milon, Alain [1 ,2 ,7 ]
Tellier, Charles [6 ]
Faure, Regis [1 ,2 ,3 ,4 ]
O'Donohue, Michael J. [1 ,2 ,3 ,4 ]
机构
[1] Univ Toulouse, F-31077 Toulouse, France
[2] INP, UPS, INSA, F-31077 Toulouse, France
[3] INRA, UMR792, F-31400 Toulouse, France
[4] CNRS, LISBP UMR5504, F-31400 Toulouse, France
[5] Agence Environm & Maitrise Energie, F-49004 Angers 01, France
[6] Univ Nantes, UFIP FRE CNRS 3478, Fac Sci & Tech, F-44322 Nantes 03, France
[7] Inst Pharmacol & Biol Struct, CNRS, IPBS UMR 5089, Toulouse, France
关键词
XYLOGLUCAN ENDO-TRANSGLYCOSYLASES; BETA-N-ACETYLGLUCOSAMINIDASE; TRANSFER DIFFERENCE NMR; GLYCOSIDE HYDROLASE; CHEMOENZYMATIC SYNTHESIS; ENZYMATIC-SYNTHESIS; DIRECTED EVOLUTION; LIGAND-BINDING; OLIGOSACCHARIDES; ARABINOXYLAN;
D O I
10.1016/j.nbt.2013.04.002
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Directed evolution was applied to the alpha-L-arabinofuranosidase from Thermobacillus xylanilyticus to confer better transglycosylation ability, particularly for the synthesis of benzyl alpha-L-arabinofuranosyl-(1,2)-alpha-D-xylopyranoside, starting from p-nitrophenyl alpha-L-arabinofuranoside (donor) and benzyl alpha-D-xylopyranoside (acceptor). The aim was to obtain mutants displaying both lower hydrolytic and greater transglycosylation activities to favour the stable production of the target disaccharide. The implementation of a simple chromogenic screen ultimately provided three mutant enzymes whose properties correspond to those sought after. These all displayed lowered hydrolytic activity and conserved or slightly improved transfer activity, while one of them also displayed lowered secondary hydrolysis of the transglycosylation product. DNA sequence analysis of the mutants revealed between three and seven point mutations and biochemical analysis combined with STD-NMR experiments indicated that distinct molecular mechanisms were active among the three mutants.
引用
收藏
页码:536 / 544
页数:9
相关论文
共 50 条
  • [31] A novel bifunctional GH51 exo-α-l-arabinofuranosidase/endo-xylanase from Alicyclobacillus sp. A4 with significant biomass-degrading capacity
    Wenxia Yang
    Yingguo Bai
    Peilong Yang
    Huiying Luo
    Huoqing Huang
    Kun Meng
    Pengjun Shi
    Yaru Wang
    Bin Yao
    Biotechnology for Biofuels, 8
  • [32] The GH51 α-l-arabinofuranosidase from Paenibacillus sp. THS1 is multifunctional, hydrolyzing main-chain and side-chain glycosidic bonds in heteroxylans
    Hanen Bouraoui
    Marie-Laure Desrousseaux
    Eleni Ioannou
    Pablo Alvira
    Mohamed Manaï
    Caroline Rémond
    Claire Dumon
    Narcis Fernandez-Fuentes
    Michael J. O’Donohue
    Biotechnology for Biofuels, 9
  • [33] Biochemical and kinetic characterization of GH43 β-D-xylosidase/α-L-arabinofuranosidase and GH30 α-L-arabinofuranosidase/β-D-xylosidase from rumen metagenome
    Zhou, Jungang
    Bao, Lei
    Chang, Lei
    Zhou, Yufei
    Lu, Hong
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2012, 39 (01) : 143 - 152
  • [34] Thermostability Enhancement of GH 62 α-l-Arabinofuranosidase by Directed Evolution and Rational Design
    Martins, Manoela
    dos Santos, Alberto M.
    da Costa, Clauber H. S.
    Canner, Samuel W.
    Chungyoun, Michael
    Gray, Jeffrey J.
    Skaf, Munir S.
    Ostermeier, Marc
    Goldbeck, Rosana
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (08) : 4225 - 4236
  • [35] Structural and functional analyses of GH51 alpha-L-arabinofuranosidase of Geobacillus vulcani GS90 reveal crucial residues for catalytic activity and thermostability
    Surmeli, Yusuf
    Sanli-Mohamed, Gulsah
    BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2023, 70 (03) : 1100 - 1108
  • [36] Biochemical and Structural Characterization of Thermostable GH159 Glycoside Hydrolases Exhibiting α-L-Arabinofuranosidase Activity
    Baudrexl, Melanie
    Fida, Tarik
    Berk, Berkay
    Schwarz, Wolfgang H.
    Zverlov, Vladimir V.
    Groll, Michael
    Liebl, Wolfgang
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [37] Crystal structure and snapshots along the reaction pathway of a family 51 α-L-arabinofuranosidase
    Hövel, K
    Shallom, D
    Niefind, K
    Belakhov, V
    Shoham, G
    Baasov, T
    Shoham, Y
    Schomburg, D
    EMBO JOURNAL, 2003, 22 (19): : 4922 - 4932
  • [38] GH51 Arabinofuranosidase and Its Role in the Methylglucuronoarabinoxylan Utilization System in Paenibacillus sp Strain JDR-2
    Sawhney, Neha
    Preston, James F.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2014, 80 (19) : 6114 - 6125
  • [39] Application of protein engineering on α-L-arabinofuranosidase (abfa) from Thermophilic Bacterium
    Surmeli, Yusuf
    Ilgu, Huseyin
    Mohamed, Gulsah Sanli
    CURRENT OPINION IN BIOTECHNOLOGY, 2011, 22 : S86 - S87
  • [40] Differential expression of α-L-arabinofuranosidase and α-L-arabinofuranosidase/β-D-xylosidase genes during peach growth and ripening
    Carolina Di Santo, M.
    Pagano, Eduardo A.
    Sozzi, Gabriel O.
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2009, 47 (07) : 562 - 569