Engineering transglycosidase activity into a GH51 α-L-arabinofuranosidase

被引:22
|
作者
Arab-Jaziri, Faten [1 ,2 ,3 ,4 ,5 ]
Bissaro, Bastien [1 ,2 ,3 ,4 ]
Dion, Michel [6 ]
Saurel, Olivier [1 ,2 ,7 ]
Harrison, David [1 ,2 ,3 ,4 ]
Ferreira, Fernando [1 ,2 ,3 ,4 ]
Milon, Alain [1 ,2 ,7 ]
Tellier, Charles [6 ]
Faure, Regis [1 ,2 ,3 ,4 ]
O'Donohue, Michael J. [1 ,2 ,3 ,4 ]
机构
[1] Univ Toulouse, F-31077 Toulouse, France
[2] INP, UPS, INSA, F-31077 Toulouse, France
[3] INRA, UMR792, F-31400 Toulouse, France
[4] CNRS, LISBP UMR5504, F-31400 Toulouse, France
[5] Agence Environm & Maitrise Energie, F-49004 Angers 01, France
[6] Univ Nantes, UFIP FRE CNRS 3478, Fac Sci & Tech, F-44322 Nantes 03, France
[7] Inst Pharmacol & Biol Struct, CNRS, IPBS UMR 5089, Toulouse, France
关键词
XYLOGLUCAN ENDO-TRANSGLYCOSYLASES; BETA-N-ACETYLGLUCOSAMINIDASE; TRANSFER DIFFERENCE NMR; GLYCOSIDE HYDROLASE; CHEMOENZYMATIC SYNTHESIS; ENZYMATIC-SYNTHESIS; DIRECTED EVOLUTION; LIGAND-BINDING; OLIGOSACCHARIDES; ARABINOXYLAN;
D O I
10.1016/j.nbt.2013.04.002
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Directed evolution was applied to the alpha-L-arabinofuranosidase from Thermobacillus xylanilyticus to confer better transglycosylation ability, particularly for the synthesis of benzyl alpha-L-arabinofuranosyl-(1,2)-alpha-D-xylopyranoside, starting from p-nitrophenyl alpha-L-arabinofuranoside (donor) and benzyl alpha-D-xylopyranoside (acceptor). The aim was to obtain mutants displaying both lower hydrolytic and greater transglycosylation activities to favour the stable production of the target disaccharide. The implementation of a simple chromogenic screen ultimately provided three mutant enzymes whose properties correspond to those sought after. These all displayed lowered hydrolytic activity and conserved or slightly improved transfer activity, while one of them also displayed lowered secondary hydrolysis of the transglycosylation product. DNA sequence analysis of the mutants revealed between three and seven point mutations and biochemical analysis combined with STD-NMR experiments indicated that distinct molecular mechanisms were active among the three mutants.
引用
收藏
页码:536 / 544
页数:9
相关论文
共 50 条
  • [21] A novel GH43 α-l-arabinofuranosidase from Humicola insolens: mode of action and synergy with GH51 α-l-arabinofuranosidases on wheat arabinoxylan
    Hanne R. Sørensen
    Christel T. Jørgensen
    Carsten H. Hansen
    Christian I. Jørgensen
    Sven Pedersen
    Anne S. Meyer
    Applied Microbiology and Biotechnology, 2006, 73 : 850 - 861
  • [22] A GH51 α-l-arabinofuranosidase from Talaromyces leycettanus strain JCM12802 that selectively drives synergistic lignocellulose hydrolysis
    Tao Tu
    Xiaoli Li
    Kun Meng
    Yingguo Bai
    Yuan Wang
    Zhenxing Wang
    Bin Yao
    Huiying Luo
    Microbial Cell Factories, 18
  • [23] Arabinoxylo- and Arabino-Oligosaccharides- Specific α-L-Arabinofuranosidase GH51 Isozymes from the Amylolytic Yeast Saccharomycopsis fibuligera
    Park, Tae Hyeon
    Choi, Chang-Yun
    Kim, Hyeon Jin
    Song, Jeong-Rok
    Park, Damee
    Kang, Hyun Ah
    Kim, Tae-Jip
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2021, 31 (02) : 233 - 240
  • [24] A GH51 α-l-arabinofuranosidase from Talaromyces leycettanus strain JCM12802 that selectively drives synergistic lignocellulose hydrolysis
    Tu, Tao
    Li, Xiaoli
    Meng, Kun
    Bai, Yingguo
    Wang, Yuan
    Wang, Zhenxing
    Yao, Bin
    Luo, Huiying
    MICROBIAL CELL FACTORIES, 2019, 18 (01)
  • [25] Mutation of a pH-modulating residue in a GH51 α-L-arabinofuranosidase leads to a severe reduction of the secondary hydrolysis of transfuranosylation products
    Bissaro, Bastien
    Saurel, Olivier
    Arab-Jaziri, Faten
    Saulnier, Luc
    Milon, Alain
    Tenkanen, Maija
    Monsan, Pierre
    O'Donohue, Michael J.
    Faure, Regis
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2014, 1840 (01): : 626 - 636
  • [26] Action of a GH 51 α-L-arabinofuranosidase on wheat-derived arabinoxylans and arabino-xylooligosaccharides
    Remond, C.
    Boukari, I.
    Chambat, G.
    O'Donohue, M.
    CARBOHYDRATE POLYMERS, 2008, 72 (03) : 424 - 430
  • [27] Highly thermostable GH51 α-arabinofuranosidase from Hungateiclostridium clariflavum DSM 19732
    Alei Geng
    Jian Wu
    Rongrong Xie
    Hongcheng Wang
    Yanfang Wu
    Xia Li
    Fuxiang Chang
    Jianzhong Sun
    Applied Microbiology and Biotechnology, 2019, 103 : 3783 - 3793
  • [28] Highly thermostable GH51 α-arabinofuranosidase from Hungateiclostridium clariflavum DSM 19732
    Geng, Alei
    Wu, Jian
    Xie, Rongrong
    Wang, Hongcheng
    Wu, Yanfang
    Li, Xia
    Chang, Fuxiang
    Sun, Jianzhong
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 103 (09) : 3783 - 3793
  • [29] A novel bifunctional GH51 exo-α-L-arabinofuranosidase/endo-xylanase from Alicyclobacillus sp A4 with significant biomass-degrading capacity
    Yang, Wenxia
    Bai, Yingguo
    Yang, Peilong
    Luo, Huiying
    Huang, Huoqing
    Meng, Kun
    Shi, Pengjun
    Wang, Yaru
    Yao, Bin
    BIOTECHNOLOGY FOR BIOFUELS, 2015, 8
  • [30] The GH51 α-L-arabinofuranosidase from Paenibacillus sp THS1 is multifunctional, hydrolyzing main-chain and side-chain glycosidic bonds in heteroxylans
    Bouraoui, Hanen
    Desrousseaux, Marie-Laure
    Ioannou, Eleni
    Alvira, Pablo
    Manai, Mohamed
    Remond, Caroline
    Dumon, Claire
    Fernandez-Fuentes, Narcis
    O'Donohue, Michael J.
    BIOTECHNOLOGY FOR BIOFUELS, 2016, 9