Orlicz-Hardy Spaces Associated with Divergence Operators on Unbounded Strongly Lipschitz Domains of Rn

被引:27
|
作者
Yang, Dachun [1 ]
Yang, Sibei [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Orlicz-Hardy space; divergence form elliptic operator; strongly Lipschitz domain; Neumann boundary condition; Gaussian property; nontangential maximal function; Lusin area function; SMOOTH DOMAIN; HP SPACES; BOUNDARY; BMO; DUALITY;
D O I
10.1512/iumj.2012.61.4535
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be either R-n or an unbounded strongly Lipschitz domain of R-n, and let Phi be a continuous, strictly increasing, subadditive, and positive function on (0, infinity) of upper type 1 and of strictly critical lower type index p(Phi) is an element of (n/(n + 1), 1]. Let L be a divergence form elliptic operator on L-2(Omega) with the Neumann boundary condition, and assume that the heat semigroup generated by L has the Gaussian property (G(infinity)). In this paper, the authors introduce the Orlicz-Hardy space H-Phi,H-L (Omega) via the nontangential maximal function associated with {e(-t root L)}(t >= 0) and establish its equivalent characterization in terms of the Lusin area function associated with {e(-t root L)}(t >= 0). The authors also introduce the "geometrical" Orlicz-Hardy space H-Phi,H-z(Omega) via the classical Orlicz-Hardy space H-Phi (R-n) and prove that the spaces H-Phi,H-L (Omega) cm and H-Phi,H-z (Omega) coincide with equivalent norms, from which characterizations of H-Phi,H-L (Omega), including the vertical and the nontangential maximal function characterizations associated with {e(-tL)}(t >= 0) and the Lusin area function characterization associated with {e(-tL)}(t >= 0), are deduced. All the above results generalize the well-known results of P. Auscher and E. Russ by taking Phi(t) t for all t is an element of (0, infinity).
引用
收藏
页码:81 / 129
页数:49
相关论文
共 50 条
  • [1] Hardy spaces and divergence operators on strongly Lipschitz domains of Rn
    Auscher, P
    Russ, E
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (01) : 148 - 184
  • [2] Real-variable characterizations of Orlicz-Hardy spaces on strongly Lipschitz domains of Rn
    Yang, Dachun
    Yang, Sibei
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (01) : 237 - 292
  • [3] Orlicz-Hardy spaces associated with operators
    RenJin Jiang
    DaChun Yang
    Yuan Zhou
    [J]. Science in China Series A: Mathematics, 2009, 52
  • [4] Orlicz-Hardy spaces associated with operators
    JIANG RenJin
    Laboratory of Mathematics and Complex Syst- ems
    [J]. Science China Mathematics, 2009, (05) : 1042 - 1080
  • [5] Orlicz-Hardy spaces associated with operators
    JIANG RenJin YANG DaChun ZHOU Yuan School of Mathematical Sciences Beijing Normal University
    Laboratory of Mathematics and Complex Syst ems Ministry of Education Beijing China
    [J]. Science in China(Series A:Mathematics)., 2009, 52 (05) - 1080
  • [6] Orlicz-Hardy spaces associated with operators
    Jiang RenJin
    Yang DaChun
    Zhou Yuan
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (05): : 1042 - 1080
  • [7] New Orlicz-Hardy spaces associated with divergence form elliptic operators
    Jiang, Renjin
    Yang, Dachun
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (04) : 1167 - 1224
  • [8] Hardy!Sobolev spaces on strongly Lipschitz domains of Rn
    Auscher, P
    Russ, E
    Tchamitchian, P
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 218 (01) : 54 - 109
  • [9] Predual Spaces of Banach Completions of Orlicz-Hardy Spaces Associated with Operators
    Renjin Jiang
    Dachun Yang
    [J]. Journal of Fourier Analysis and Applications, 2011, 17 : 1 - 35
  • [10] Hardy spaces associated with magnetic Schrodinger operators on strongly Lipschitz domains
    Yang, Dachun
    Yang, Dongyong
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (18) : 6433 - 6447