Hardy spaces and divergence operators on strongly Lipschitz domains of Rn

被引:104
|
作者
Auscher, P [1 ]
Russ, E
机构
[1] Univ Paris 11, F-91405 Orsay, France
[2] CNRS, UMR 8628, F-91405 Orsay, France
[3] Fac Sci & Tech St Jerome, F-13397 Marseille, France
关键词
strongly Lipschitz domain; elliptic second-order operator; boundary condition; hardy spaces; maximal functions; atomic decomposition;
D O I
10.1016/S0022-1236(03)00059-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a strongly Lipschitz domain of R-n. Consider an elliptic second-order divergence operator L (including a boundary condition on partial derivativeOmega) and define a Hardy space by imposing the non-tangential maximal function of the extension of a function f via the Poisson semigroup for L to be in L-1. Under suitable assumptions on L, we identify this maximal Hardy space with H-1(R-n) if Omega = R-n, with H-r(1)(Omega) under the Dirichlet boundary condition, and with H-z(1)(Omega) under the Neumann boundary condition. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:148 / 184
页数:37
相关论文
共 50 条
  • [1] Orlicz-Hardy Spaces Associated with Divergence Operators on Unbounded Strongly Lipschitz Domains of Rn
    Yang, Dachun
    Yang, Sibei
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (01) : 81 - 129
  • [2] Hardy!Sobolev spaces on strongly Lipschitz domains of Rn
    Auscher, P
    Russ, E
    Tchamitchian, P
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 218 (01) : 54 - 109
  • [3] Hardy spaces associated with magnetic Schrodinger operators on strongly Lipschitz domains
    Yang, Dachun
    Yang, Dongyong
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (18) : 6433 - 6447
  • [4] On the atomic decomposition for Hardy spaces on Lipschitz domains of Rn
    Duong, XT
    Yan, LX
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 215 (02) : 476 - 486
  • [5] Hardy spaces of exact forms on Lipschitz domains in RN
    Lou, ZJ
    McIntosh, A
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) : 583 - 611
  • [6] Real-variable characterizations of Orlicz-Hardy spaces on strongly Lipschitz domains of Rn
    Yang, Dachun
    Yang, Sibei
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (01) : 237 - 292
  • [7] Hardy Sobolev spaces on strongly Lipschitz domains of Rn (vol 218, pg 54, 2005)
    Auscher, Pascal
    Russ, Emmanuel
    Tchamitchian, Philippe
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (02) : 782 - 785
  • [8] Hardy and Hardy-Sobolev Spaces on Strongly Lipschitz Domains and Some Applications
    Chen, Xiaming
    Jiang, Renjin
    Yang, Dachun
    [J]. ANALYSIS AND GEOMETRY IN METRIC SPACES, 2016, 4 (01): : 336 - 362
  • [9] Hardy spaces associated to the Schrodinger operator on strongly Lipschitz domains of Rd
    Huang, Jizheng
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (01) : 141 - 168
  • [10] BIG HANKEL OPERATORS ON HARDY SPACES OF STRONGLY PSEUDOCONVEX DOMAINS
    陈伯勇
    江良英
    [J]. Acta Mathematica Scientia, 2024, 44 (03) : 789 - 809