Hardy and Hardy-Sobolev Spaces on Strongly Lipschitz Domains and Some Applications

被引:3
|
作者
Chen, Xiaming [1 ]
Jiang, Renjin [2 ,3 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Hardy space; Hardy-Sobolev space; grand maximal function; div-curl formula; divergence equation; INHOMOGENEOUS DIRICHLET; DIVERGENCE OPERATORS; SMOOTH DOMAIN; JOHN; DECOMPOSITION; SUBSETS; FORMS;
D O I
10.1515/agms-2016-0017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of R-n be a strongly Lipschitz domain. In this article, the authors study Hardy spaces, H-r(p)(Omega) and H-z(p)(Omega), and Hardy-Sobolev spaces, H-r(1),p (Omega) and Pi(1)(,p)(Z)(0),(Omega) on Omega, for p is an element of(n/n+1,) . The authors establish grand maximal function characterizations of these spaces. As applications, the authors obtain some div-curl lemmas in these settings and, when Omega is a bounded Lipschitz domain, the authors prove that the divergence equation div u = f for f is an element of H-z(p)(Omega) is solvable in H-z,(0)1,(p),(Omega) with suitable regularity estimates.
引用
收藏
页码:336 / 362
页数:27
相关论文
共 50 条