Orlicz-Hardy spaces associated with operators

被引:42
|
作者
Jiang RenJin [1 ]
Yang DaChun [1 ]
Zhou Yuan [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2009年 / 52卷 / 05期
基金
美国国家科学基金会;
关键词
Orlicz function; Orlicz-Hardy space; BMO; duality; molecule; fractional integral; 2ND-ORDER ELLIPTIC-OPERATORS; HEAT KERNEL BOUNDS; RIESZ TRANSFORMS; BMO; DUALITY;
D O I
10.1007/s11425-008-0136-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L be a linear operator in L-2 (R-n) and generate an analytic semigroup {e(-tL)}(t >= 0) with kernel satisfying an upper bound of Poisson type, whose decay is measured by theta(L) is an element of (0, infinity). Let omega on (0, infinity) be of upper type 1 and of critical lower type (p) over tilde (0)(omega) is an element of (n/(n + theta(L)), 1] and rho(t) = t(-1)/omega(-1) (t(-1)) for t is an element of (0, infinity). We introduce the Orlicz-Hardy space H-omega,H- L(R-n) and the BMO-type space BMO rho, L(R-n) and establish the John-Nirenberg inequality for BMO rho, L(R-n) functions and the duality relation between H-omega,H- L(R-n) and BMO rho, L* (R-n), where L* denotes the adjoint operator of L in L-2(R-n). Using this duality relation, we further obtain the rho-Carleson measure characterization of BMO rho, L* (R-n) and the molecular characterization of H-omega,H- L(R-n); the latter is used to establish the boundedness of the generalized fractional operator L-rho(-gamma) from H-omega,H- L(R-n) to H-L(1) (R-n) or L-q (R-n) with certain q > 1, where H-L(1) (R-n) is the Hardy space introduced by Auscher, Duong and McIntosh. These results generalize the existing results by taking omega(t) - t(p) for t is an element of (0, infinity) and p is an element of (n/(n + theta(L)), 1].
引用
收藏
页码:1042 / 1080
页数:39
相关论文
共 50 条
  • [1] Orlicz-Hardy spaces associated with operators
    RenJin Jiang
    DaChun Yang
    Yuan Zhou
    [J]. Science in China Series A: Mathematics, 2009, 52
  • [2] Orlicz-Hardy spaces associated with operators
    JIANG RenJin
    Laboratory of Mathematics and Complex Syst- ems
    [J]. Science China Mathematics, 2009, (05) : 1042 - 1080
  • [3] Orlicz-Hardy spaces associated with operators
    JIANG RenJin YANG DaChun ZHOU Yuan School of Mathematical Sciences Beijing Normal University
    Laboratory of Mathematics and Complex Syst ems Ministry of Education Beijing China
    [J]. Science in China(Series A:Mathematics)., 2009, 52 (05) - 1080
  • [4] Predual Spaces of Banach Completions of Orlicz-Hardy Spaces Associated with Operators
    Renjin Jiang
    Dachun Yang
    [J]. Journal of Fourier Analysis and Applications, 2011, 17 : 1 - 35
  • [5] Predual Spaces of Banach Completions of Orlicz-Hardy Spaces Associated with Operators
    Jiang, Renjin
    Yang, Dachun
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (01) : 1 - 35
  • [6] Boundedness of Generalized Riesz Transforms on Orlicz-Hardy Spaces Associated to Operators
    Cao, Jun
    Chang, Der-Chen
    Yang, Dachun
    Yang, Sibei
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 76 (02) : 225 - 283
  • [7] Applications of Orlicz-Hardy spaces associated with operators satisfying Poisson estimates
    YiYu Liang
    DaChun Yang
    SiBei Yang
    [J]. Science China Mathematics, 2011, 54 : 2395 - 2426
  • [8] Applications of Orlicz-Hardy spaces associated with operators satisfying Poisson estimates
    Liang Yiyu
    Yang DaChun
    Yang, Sibei
    [J]. SCIENCE CHINA-MATHEMATICS, 2011, 54 (11) : 2395 - 2426
  • [10] New Orlicz-Hardy spaces associated with divergence form elliptic operators
    Jiang, Renjin
    Yang, Dachun
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (04) : 1167 - 1224