Orlicz-Hardy Spaces Associated with Divergence Operators on Unbounded Strongly Lipschitz Domains of Rn

被引:27
|
作者
Yang, Dachun [1 ]
Yang, Sibei [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Orlicz-Hardy space; divergence form elliptic operator; strongly Lipschitz domain; Neumann boundary condition; Gaussian property; nontangential maximal function; Lusin area function; SMOOTH DOMAIN; HP SPACES; BOUNDARY; BMO; DUALITY;
D O I
10.1512/iumj.2012.61.4535
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be either R-n or an unbounded strongly Lipschitz domain of R-n, and let Phi be a continuous, strictly increasing, subadditive, and positive function on (0, infinity) of upper type 1 and of strictly critical lower type index p(Phi) is an element of (n/(n + 1), 1]. Let L be a divergence form elliptic operator on L-2(Omega) with the Neumann boundary condition, and assume that the heat semigroup generated by L has the Gaussian property (G(infinity)). In this paper, the authors introduce the Orlicz-Hardy space H-Phi,H-L (Omega) via the nontangential maximal function associated with {e(-t root L)}(t >= 0) and establish its equivalent characterization in terms of the Lusin area function associated with {e(-t root L)}(t >= 0). The authors also introduce the "geometrical" Orlicz-Hardy space H-Phi,H-z(Omega) via the classical Orlicz-Hardy space H-Phi (R-n) and prove that the spaces H-Phi,H-L (Omega) cm and H-Phi,H-z (Omega) coincide with equivalent norms, from which characterizations of H-Phi,H-L (Omega), including the vertical and the nontangential maximal function characterizations associated with {e(-tL)}(t >= 0) and the Lusin area function characterization associated with {e(-tL)}(t >= 0), are deduced. All the above results generalize the well-known results of P. Auscher and E. Russ by taking Phi(t) t for all t is an element of (0, infinity).
引用
收藏
页码:81 / 129
页数:49
相关论文
共 50 条
  • [21] Orlicz-Hardy spaces and their duals
    Eiichi Nakai
    Yoshihiro Sawano
    [J]. Science China Mathematics, 2014, 57 : 903 - 962
  • [22] Orlicz-Hardy spaces and their duals
    NAKAI Eiichi
    SAWANO Yoshihiro
    [J]. Science China Mathematics, 2014, 57 (05) : 903 - 962
  • [23] Martingale Orlicz-Hardy spaces
    Miyamoto, Takashi
    Nakai, Eiichi
    Sadasue, Gaku
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (5-6) : 670 - 686
  • [24] Noncommutative Orlicz-Hardy spaces associated with growth functions
    Abdurexit, Abdugheni
    Bekjan, Turdebek N.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) : 824 - 834
  • [25] Hardy spaces associated to the Schrodinger operator on strongly Lipschitz domains of Rd
    Huang, Jizheng
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2010, 266 (01) : 141 - 168
  • [26] Interpolation of martingale Orlicz-Hardy spaces
    Long, L.
    Tian, H.
    Zhou, D.
    [J]. ACTA MATHEMATICA HUNGARICA, 2021, 163 (01) : 276 - 294
  • [27] On noncommutative weak Orlicz-Hardy spaces
    Bekjan, Turdebek N.
    Raikhan, Madi
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (01)
  • [28] Weak Orlicz-Hardy martingale spaces
    Jiao, Yong
    Wu, Lian
    Peng, Lihua
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (08)
  • [29] On the atomic decomposition for Hardy spaces on Lipschitz domains of Rn
    Duong, XT
    Yan, LX
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 215 (02) : 476 - 486
  • [30] Hardy spaces of exact forms on Lipschitz domains in RN
    Lou, ZJ
    McIntosh, A
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) : 583 - 611