Estimating Population Abundance Using Sightability Models: R Sightability Model Package

被引:0
|
作者
Fieberg, John R. [1 ]
机构
[1] Minnesota Dept Nat Resources, Biometr Unit, Forest Lake, MN USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2012年 / 51卷 / 09期
关键词
abundance estimation; Horvitz-Thompson; logistic regression; sightability model; R; survey; VISIBILITY BIAS; AERIAL SURVEYS; ELK; WILDLIFE; SHEEP;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Sightability models are binary logistic-regression models used to estimate and adjust for visibility bias in wildlife-population surveys (Steinhorst and Samuel 1989). Estimation proceeds in 2 stages: (1) Sightability trials are conducted with marked individuals, and logistic regression is used to estimate the probability of detection as a function of available covariates (e.g., visual obstruction, group size). (2) The fitted model is used to adjust counts (from future surveys) for animals that were not observed. A modified Horvitz-Thompson estimator is used to estimate abundance: counts of observed animal groups are divided by their inclusion probabilites (determined by plot-level sampling probabilities and the detection probabilities estimated from stage 1). We provide a brief historical account of the approach, clarifying and documenting suggested modifications to the variance estimators originally proposed by Steinhorst and Samuel (1989). We then introduce a new R package, SightabilityModel, for estimating abundance using this technique. Lastly, we illustrate the software with a series of examples using data collected from moose (Alcesalces) in northeastern Minnesota and mountain goats (Oreamnos americanus) in Washington State.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [41] LakeMetabolizer: an R package for estimating lake metabolism from free-water oxygen using diverse statistical models
    Winslow, Luke A.
    Zwart, Jacob A.
    Batt, Ryan D.
    Dugan, Hilary A.
    Woolway, R. Iestyn
    Corman, Jessica R.
    Hanson, Paul C.
    Read, Jordan S.
    INLAND WATERS, 2016, 6 (04) : 622 - 636
  • [42] Estimating Mountain Lion Abundance in Arizona Using Statistical Population Reconstruction
    Howard, April L.
    Clement, Matthew J.
    Peck, Frances R.
    Rubin, Esther S.
    JOURNAL OF WILDLIFE MANAGEMENT, 2020, 84 (01): : 85 - 95
  • [43] brms: An R Package for Bayesian Multilevel Models Using Stan
    Buerkner, Paul-Christian
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 80 (01): : 1 - 28
  • [44] Causal Inference Using Graphical Models with the R Package pcalg
    Kalisch, Markus
    Maechler, Martin
    Colombo, Diego
    Maathuis, Marloes H.
    Buehlmann, Peter
    JOURNAL OF STATISTICAL SOFTWARE, 2012, 47 (11): : 1 - 26
  • [45] Testing graphical causal models using the R package "dagitty"
    Ankan, A.
    CURRENT PROTOCOLS, 2021, 2 (08):
  • [46] mvabund- an R package for model-based analysis of multivariate abundance data
    Wang, Yi
    Naumann, Ulrike
    Wright, Stephen T.
    Warton, David I.
    METHODS IN ECOLOGY AND EVOLUTION, 2012, 3 (03): : 471 - 474
  • [47] Estimating abundance of a recovering transboundary brown bear population with capture-recapture models
    Vanpe, Cecile
    Piedallu, Blaise
    Quenette, Pierre-Yves
    Sentilles, Jerome
    Queney, Guillaume
    Palazon, Santiago
    Jordana, Ivan Afonso
    Jato, Ramon
    Irurtia, Miguel Mari Elosegui
    de la Torre, Jordi Sola
    Gimenez, Olivier
    PEER COMMUNITY JOURNAL, 2022, 2
  • [48] cameratrapR: An R package for estimating animal density using camera trapping data
    Li, Xinhai
    Tian, Huidong
    Piao, Zhengji
    Wang, Guiming
    Xiao, Zhishu
    Sun, Yuehua
    Gao, Erhu
    Holyoak, Marcel
    ECOLOGICAL INFORMATICS, 2022, 69
  • [49] mixl: An open-source R package for estimating complex choice models on large datasets
    Molloy, Joseph
    Becker, Felix
    Schmid, Basil
    Axhausen, Kay W.
    JOURNAL OF CHOICE MODELLING, 2021, 39
  • [50] ubms: An R package for fitting hierarchical occupancy and N-mixture abundance models in a Bayesian framework
    Kellner, Kenneth F.
    Fowler, Nicholas L.
    Petroelje, Tyler R.
    Kautz, Todd M.
    Beyer, Dean E., Jr.
    Belant, Jerrold L.
    METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (03): : 577 - 584