ubms: An R package for fitting hierarchical occupancy and N-mixture abundance models in a Bayesian framework

被引:46
|
作者
Kellner, Kenneth F. [1 ]
Fowler, Nicholas L. [1 ,2 ]
Petroelje, Tyler R. [1 ]
Kautz, Todd M. [1 ]
Beyer, Dean E., Jr. [3 ]
Belant, Jerrold L. [1 ]
机构
[1] SUNY Coll Environm Sci & Forestry, Global Wildlife Conservat Ctr, Syracuse, NY 13210 USA
[2] Alaska Dept Fish & Game, Div Wildlife Conservat, Soldotna, AK USA
[3] Michigan State Univ, Dept Fisheries & Wildlife, E Lansing, MI 48824 USA
来源
METHODS IN ECOLOGY AND EVOLUTION | 2022年 / 13卷 / 03期
关键词
Bayesian methods; modelling; population ecology; statistics; ESTIMATING SITE OCCUPANCY; RUFFED GROUSE; ASPEN;
D O I
10.1111/2041-210X.13777
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Obtaining unbiased estimates of wildlife distribution and abundance is an important objective in research and management. Occupancy and N-mixture abundance models, which correct for imperfect detection, are commonly used for this purpose. Fitting these models in a Bayesian framework has advantages but doing so can be challenging and time-consuming for many researchers. We developed an R package, ubms, which provides an easy-to-use, formula-based interface for fitting occupancy, N-mixture abundance and other models in a Bayesian framework using Stan. The package also provides tools for visualizing parameter effects, calculating residuals, assessing goodness-of-fit and comparing models. We demonstrate the use of ubms by fitting an N-mixture model to ruffed grouse Bonasa umbellus count data from drumming surveys conducted at roadside points sampled on five occasions annually during 2013-2015. To demonstrate the functionality of ubms, we used survey site as a random effect, and occasion date and per cent aspen cover at each site as covariates of detection and abundance respectively. The top-ranked model included a positive effect of per cent aspen on grouse abundance. ubms has the potential to greatly increase the range of users who will be able to rigorously assess species distribution and abundance while correcting for imperfect detection in a Bayesian framework.
引用
收藏
页码:577 / 584
页数:8
相关论文
共 43 条
  • [1] Estimating Animal Abundance with N-Mixture Models Using the R-INLA Package for R
    Meehan, Timothy D.
    Michel, Nicole L.
    Rue, Havard
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2020, 95 (02): : 1 - 26
  • [2] Unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance
    Fiske, Ian J.
    Chandler, Richard B.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2011, 43 (10): : 1 - 23
  • [3] N-mixture models reliably estimate the abundance of small vertebrates
    Ficetola, Gentile Francesco
    Barzaghi, Benedetta
    Melotto, Andrea
    Muraro, Martina
    Lunghi, Enrico
    Canedoli, Claudia
    Lo Parrino, Elia
    Nanni, Veronica
    Silva-Rocha, Iolanda
    Urso, Arianna
    Carretero, Miguel Angel
    Salvi, Daniele
    Scali, Stefano
    Scari, Giorgio
    Pennati, Roberta
    Andreone, Franco
    Manenti, Raoul
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [4] N-mixture models reliably estimate the abundance of small vertebrates
    Gentile Francesco Ficetola
    Benedetta Barzaghi
    Andrea Melotto
    Martina Muraro
    Enrico Lunghi
    Claudia Canedoli
    Elia Lo Parrino
    Veronica Nanni
    Iolanda Silva-Rocha
    Arianna Urso
    Miguel Angel Carretero
    Daniele Salvi
    Stefano Scali
    Giorgio Scarì
    Roberta Pennati
    Franco Andreone
    Raoul Manenti
    [J]. Scientific Reports, 8
  • [5] Estimating Lion Abundance using N-mixture Models for Social Species
    Jerrold L. Belant
    Florent Bled
    Clay M. Wilton
    Robert Fyumagwa
    Stanslaus B. Mwampeta
    Dean E. Beyer
    [J]. Scientific Reports, 6
  • [6] Estimating Lion Abundance using N-mixture Models for Social Species
    Belant, Jerrold L.
    Bled, Florent
    Wilton, Clay M.
    Fyumagwa, Robert
    Mwampeta, Stanslaus B.
    Beyer, Dean E., Jr.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [7] BAMBI: An R Package for Fitting Bivariate Angular Mixture Models
    Chakraborty, Saptarshi
    Wong, Samuel W. K.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2021, 99 (11): : 1 - 69
  • [8] An efficient extension of N-mixture models for multi-species abundance estimation
    Gomez, Juan P.
    Robinson, Scott K.
    Blackburn, Jason K.
    Ponciano, Jose M.
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2018, 9 (02): : 340 - 353
  • [9] Reliability of multinomial N-mixture models for estimating abundance of small terrestrial vertebrates
    Costa, Andrea
    Romano, Antonio
    Salvidio, Sebastiano
    [J]. BIODIVERSITY AND CONSERVATION, 2020, 29 (9-10) : 2951 - 2965
  • [10] Field evaluation of abundance estimates under binomial and multinomial N-mixture models
    Botsch, Yves
    Jenni, Lukas
    Kery, Marc
    [J]. IBIS, 2020, 162 (03) : 902 - 910