Estimating Animal Abundance with N-Mixture Models Using the R-INLA Package for R

被引:5
|
作者
Meehan, Timothy D. [1 ]
Michel, Nicole L. [2 ]
Rue, Havard [3 ]
机构
[1] Natl Audubon Soc, Boulder, CO 80306 USA
[2] Natl Audubon Soc, San Francisco, CA USA
[3] King Abdulla Univ Sci & Technol, Thuwal, Saudi Arabia
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 95卷 / 02期
关键词
abundance; detection; JAGS; N-mixture model; R; R-INLA; unmarked; wildlife; COUNTS; INFERENCE;
D O I
10.18637/jss.v095.i02
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Successful management of wildlife populations requires accurate estimates of abundance. Abundance estimates can be confounded by imperfect detection during wildlife surveys. N-mixture models enable quantification of detection probability and, under appropriate conditions, produce abundance estimates that are less biased. Here, we demonstrate how to use the R-INLA package for R to analyze N-mixture models, and compare performance of R-INLA to two other common approaches: JAGS (via the runjags package for R), which uses Markov chain Monte Carlo and allows Bayesian inference, and the unmarked package for R, which uses maximum likelihood and allows frequentist inference. We show that R-INLA is an attractive option for analyzing N-mixture models when (i) fast computing times are necessary (R-INLA is 10 times faster than unmarked and 500 times faster than JAGS), (ii) familiar model syntax and data format (relative to other R packages) is desired, (iii) survey-level covariates of detection are not essential, and (iv) Bayesian inference is preferred.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [1] ubms: An R package for fitting hierarchical occupancy and N-mixture abundance models in a Bayesian framework
    Kellner, Kenneth F.
    Fowler, Nicholas L.
    Petroelje, Tyler R.
    Kautz, Todd M.
    Beyer, Dean E., Jr.
    Belant, Jerrold L.
    METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (03): : 577 - 584
  • [2] Competing risks joint models using R-INLA
    van Niekerk, Janet
    Bakka, Haakon
    Rue, Havard
    STATISTICAL MODELLING, 2020,
  • [3] Competing risks joint models using R-INLA
    van Niekerk, Janet
    Bakka, Haakon
    Rue, Havard
    STATISTICAL MODELLING, 2021, 21 (1-2) : 56 - 71
  • [4] Estimating Lion Abundance using N-mixture Models for Social Species
    Jerrold L. Belant
    Florent Bled
    Clay M. Wilton
    Robert Fyumagwa
    Stanslaus B. Mwampeta
    Dean E. Beyer
    Scientific Reports, 6
  • [5] Estimating Lion Abundance using N-mixture Models for Social Species
    Belant, Jerrold L.
    Bled, Florent
    Wilton, Clay M.
    Fyumagwa, Robert
    Mwampeta, Stanslaus B.
    Beyer, Dean E., Jr.
    SCIENTIFIC REPORTS, 2016, 6
  • [6] Spatial and spatio-temporal models with R-INLA
    Blangiardo, Marta
    Cameletti, Michela
    Baio, Gianluca
    Rue, Havard
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2013, 4 : 33 - 49
  • [7] Spatial and spatio-temporal models with R-INLA
    Blangiardo, Marta
    Cameletti, Michela
    Baio, Gianluca
    Rue, Havard
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2013, 7 : 39 - 55
  • [8] Estimating abundance of an open population with an N-mixture model using auxiliary data on animal movements
    Ketz, Alison C.
    Johnson, Therese L.
    Monello, Ryan J.
    Mack, John A.
    George, Janet L.
    Kraft, Benjamin R.
    Wild, Margaret A.
    Hooten, Mevin B.
    Hobbs, N. Thompson
    ECOLOGICAL APPLICATIONS, 2018, 28 (03) : 816 - 825
  • [9] Joint posterior inference for latent Gaussian models with R-INLA
    Chiuchiolo, Cristian
    van Niekerk, Janet
    Rue, Havard
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (05) : 723 - 752
  • [10] Reliability of multinomial N-mixture models for estimating abundance of small terrestrial vertebrates
    Costa, Andrea
    Romano, Antonio
    Salvidio, Sebastiano
    BIODIVERSITY AND CONSERVATION, 2020, 29 (9-10) : 2951 - 2965