Estimating Population Abundance Using Sightability Models: R Sightability Model Package

被引:0
|
作者
Fieberg, John R. [1 ]
机构
[1] Minnesota Dept Nat Resources, Biometr Unit, Forest Lake, MN USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2012年 / 51卷 / 09期
关键词
abundance estimation; Horvitz-Thompson; logistic regression; sightability model; R; survey; VISIBILITY BIAS; AERIAL SURVEYS; ELK; WILDLIFE; SHEEP;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Sightability models are binary logistic-regression models used to estimate and adjust for visibility bias in wildlife-population surveys (Steinhorst and Samuel 1989). Estimation proceeds in 2 stages: (1) Sightability trials are conducted with marked individuals, and logistic regression is used to estimate the probability of detection as a function of available covariates (e.g., visual obstruction, group size). (2) The fitted model is used to adjust counts (from future surveys) for animals that were not observed. A modified Horvitz-Thompson estimator is used to estimate abundance: counts of observed animal groups are divided by their inclusion probabilites (determined by plot-level sampling probabilities and the detection probabilities estimated from stage 1). We provide a brief historical account of the approach, clarifying and documenting suggested modifications to the variance estimators originally proposed by Steinhorst and Samuel (1989). We then introduce a new R package, SightabilityModel, for estimating abundance using this technique. Lastly, we illustrate the software with a series of examples using data collected from moose (Alcesalces) in northeastern Minnesota and mountain goats (Oreamnos americanus) in Washington State.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] Estimating rodent population abundance using early climatic predictors
    Giovanni Marini
    Daniele Arnoldi
    Annapaola Rizzoli
    Valentina Tagliapietra
    European Journal of Wildlife Research, 2023, 69
  • [32] Estimating rodent population abundance using early climatic predictors
    Marini, Giovanni
    Arnoldi, Daniele
    Rizzoli, Annapaola
    Tagliapietra, Valentina
    EUROPEAN JOURNAL OF WILDLIFE RESEARCH, 2023, 69 (02)
  • [33] Building Predictive Models in R Using the caret Package
    Kuhn, Max
    JOURNAL OF STATISTICAL SOFTWARE, 2008, 28 (05): : 1 - 26
  • [34] OrthoPanels: An R Package for Estimating a Dynamic Panel Model with Fixed Effects Using the Orthogonal Reparameterization Approach
    Pickup, Mark
    Gustafson, Paul
    Cubranic, Davor
    Evans, Geoffrey
    R JOURNAL, 2017, 9 (01): : 60 - 76
  • [35] Estimating dispersal using close kin dyads: The kindisperse R package
    Jasper, Moshe E.
    Hoffmann, Ary A.
    Schmidt, Thomas L.
    MOLECULAR ECOLOGY RESOURCES, 2022, 22 (03) : 1200 - 1212
  • [36] An R package for estimating river compound load using different methods
    Nava, Veronica
    Patelli, Martina
    Rotiroti, Marco
    Leoni, Barbara
    ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 117 : 100 - 108
  • [37] Estimating Conditional Distributions with Neural Networks Using R Package deeptrafo
    Kook, Lucas
    Baumann, Philipp F. M.
    Durr, Oliver
    Sick, Beate
    Ruegamer, David
    JOURNAL OF STATISTICAL SOFTWARE, 2024, 111 (10): : 1 - 36
  • [38] Estimating Causal Effects using Bayesian Methods with the R Package BayesCACE
    Zhou, Jincheng
    Yang, Jinhui
    Hodges, James S.
    Lin, Lifeng
    Chu, Haitao
    R JOURNAL, 2023, 15 (01): : 297 - 315
  • [39] ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models
    Muscarella, Robert
    Galante, Peter J.
    Soley-Guardia, Mariano
    Boria, Robert A.
    Kass, Jamie M.
    Uriarte, Maria
    Anderson, Robert P.
    METHODS IN ECOLOGY AND EVOLUTION, 2014, 5 (11): : 1198 - 1205
  • [40] Estimating abundance of an open population with an N-mixture model using auxiliary data on animal movements
    Ketz, Alison C.
    Johnson, Therese L.
    Monello, Ryan J.
    Mack, John A.
    George, Janet L.
    Kraft, Benjamin R.
    Wild, Margaret A.
    Hooten, Mevin B.
    Hobbs, N. Thompson
    ECOLOGICAL APPLICATIONS, 2018, 28 (03) : 816 - 825