Fast Bayesian approach for parameter estimation

被引:31
|
作者
Jin, Bangti [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
proper orthogonal decomposition; stochastic collocation method; Bayesian inference approach; reduced-order modeling; parameter estimation;
D O I
10.1002/nme.2319
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents two techniques, i.e. the proper orthogonal decomposition (POD) and the stochastic collocation method (SCM), for constructing surrogate models to accelerate the Bayesian inference approach for parameter estimation problems associated with partial differential equations. POD is a model reduction technique that derives reduced-order models using an optimal problem-adapted basis to effect significant reduction of the problem size and hence computational cost. SCM is an uncertainty propagation technique that approximates the parameterized solution and reduces further forward solves to function evaluations. The utility of the techniques is assessed on the non-linear inverse problem of probabilistically calibrating scalar Robin coefficients from boundary measurements arising in the quenching process and non-destructive evaluation. A hierarchical Bayesian model that handles flexibly the regularization parameter and the noise level is employed, and the posterior state space is explored by the Markov chain Monte Carlo. The numerical results indicate that significant computational gains can be realized without sacrificing the accuracy. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:230 / 252
页数:23
相关论文
共 50 条
  • [41] Regularized supervised Bayesian approach for image deconvolution with regularization parameter estimation
    Laaziri, Bouchra
    Raghay, Said
    Hakim, Abdelilah
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2020, 2020 (01)
  • [42] Parameter estimation risk in asset pricing and risk management: A Bayesian approach
    Tunaru, Radu
    Zheng, Teng
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2017, 53 : 80 - 93
  • [43] Amortized Bayesian Parameter Estimation Approach for WECC Composite Load Model
    Tan, Bendong
    Zhao, Junbo
    Duan, Nan
    2024 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM 2024, 2024,
  • [44] Amortized Bayesian Parameter Estimation Approach for WECC Composite Load Model
    Tan, Bendong
    Zhao, Junbo
    Duan, Nan
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (01) : 1517 - 1529
  • [45] A Bayesian approach to state and parameter estimation in a Phytoplankton-Zooplankton model
    Jones, Emlyn
    Parslow, John
    Murray, Lawrence
    AUSTRALIAN METEOROLOGICAL AND OCEANOGRAPHIC JOURNAL, 2010, 59 : 7 - 15
  • [46] Parameter Estimation of General Regression Neural Network Using Bayesian Approach
    Choir, Achmad Syahrul
    Prasetyo, Rindang Bangun
    Ulama, Brodjol Sutijo Suprih
    Iriawan, Nur
    Fitriasari, Kartika
    Dokhi, Mohammad
    PROCEEDINGS OF THE 7TH SEAMS UGM INTERNATIONAL CONFERENCE ON MATHEMATICS AND ITS APPLICATIONS 2015: ENHANCING THE ROLE OF MATHEMATICS IN INTERDISCIPLINARY RESEARCH, 2016, 1707
  • [47] BAYESIAN APPROACH IN ESTIMATION OF SHAPE PARAMETER OF THE EXPONENTIATED MOMENT EXPONENTIAL DISTRIBUTION
    Fatima, Kawsar
    Ahmad, S. P.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2018, 17 (02): : 359 - 374
  • [48] Bayesian Approach in Estimation of Shape Parameter of the Exponentiated Moment Exponential Distribution
    Kawsar Fatima
    S. P. Ahmad
    Journal of Statistical Theory and Applications, 2018, 17 (2): : 359 - 374
  • [49] A Bayesian approach to parameter estimation and pooling in nonlinear flood event models
    Cmw. Sci. and Indust. Res. Org., Math. and Information Sciences, Wembley, WA, Australia
    不详
    不详
    不详
    不详
    Water Resour. Res., 1 (211-220):
  • [50] A Bayesian approach to parameter estimation for a crayfish (Procambarus spp) bioaccumulation model
    Lin, HI
    Berzins, DW
    Myers, L
    George, WT
    Abdelghani, A
    Watanabe, KH
    ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2004, 23 (09) : 2259 - 2266