Fast Bayesian approach for parameter estimation

被引:31
|
作者
Jin, Bangti [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
proper orthogonal decomposition; stochastic collocation method; Bayesian inference approach; reduced-order modeling; parameter estimation;
D O I
10.1002/nme.2319
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents two techniques, i.e. the proper orthogonal decomposition (POD) and the stochastic collocation method (SCM), for constructing surrogate models to accelerate the Bayesian inference approach for parameter estimation problems associated with partial differential equations. POD is a model reduction technique that derives reduced-order models using an optimal problem-adapted basis to effect significant reduction of the problem size and hence computational cost. SCM is an uncertainty propagation technique that approximates the parameterized solution and reduces further forward solves to function evaluations. The utility of the techniques is assessed on the non-linear inverse problem of probabilistically calibrating scalar Robin coefficients from boundary measurements arising in the quenching process and non-destructive evaluation. A hierarchical Bayesian model that handles flexibly the regularization parameter and the noise level is employed, and the posterior state space is explored by the Markov chain Monte Carlo. The numerical results indicate that significant computational gains can be realized without sacrificing the accuracy. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:230 / 252
页数:23
相关论文
共 50 条
  • [31] Bayesian approach for parameter estimation of the diagonal of the Modified Riesz Distribution
    Ben Arab, Taher
    Hadrich, Atizez
    Masmoudi, Afif
    Zribi, Mourad
    NEUROCOMPUTING, 2015, 150 : 357 - 366
  • [32] A Bayesian approach for parameter estimation in multi-stage models
    Pham, Hoa
    Nur, Darfiana
    Pham, Huong T. T.
    Branford, Alan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (10) : 2459 - 2482
  • [33] Fast Bayesian gravitational wave parameter estimation using convolutional neural networks
    Andres-Carcasona, M.
    Martinez, M.
    Mir, Ll M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (02) : 2887 - 2894
  • [34] FAST TOTAL VARIATION IMAGE RESTORATION WITH PARAMETER ESTIMATION USING BAYESIAN INFERENCE
    Amizic, Bruno
    Babacan, S. Derin
    Ng, Michael K.
    Molina, Rafael
    Katsaggelos, Aggelos K.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 770 - 773
  • [35] Gaussbock: Fast Parallel-iterative Cosmological Parameter Estimation with Bayesian Nonparametrics
    Moews, Ben
    Zuntz, Joe
    ASTROPHYSICAL JOURNAL, 2020, 896 (02):
  • [36] Bayesian Parameter Estimation in LDA
    Liu, Z. Y.
    Wang, W. P.
    Wang, Y.
    Lu, W. Y.
    Ji, Z. Z.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL APPLICATIONS (CISIA 2015), 2015, 18 : 837 - 840
  • [37] BAYESIAN ESTIMATION OF BINOMIAL PARAMETER
    DRAPER, N
    GUTTMAN, I
    TECHNOMETRICS, 1971, 13 (03) : 667 - &
  • [38] BAYESIAN PARAMETER-ESTIMATION
    KRAMER, SC
    SORENSON, HW
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (02) : 217 - 222
  • [39] BAYESIAN ESTIMATION FOR THE MULTIFRACTALITY PARAMETER
    Wendt, Herwig
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    Abry, Patrice
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6556 - 6560
  • [40] Low complexity parameter estimation approach for fast time-delay estimation
    Carlemalm, C
    Halvarsson, S
    Wahlberg, B
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 1603 - 1608