Accuracy of Topological Entanglement Entropy on Finite Cylinders

被引:12
|
作者
Jiang, Hong-Chen [1 ]
Singh, Rajiv R. P. [2 ]
Balents, Leon [1 ]
机构
[1] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.111.107205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological phases are unique states of matter which support nonlocal excitations which behave as particles with fractional statistics. A universal characterization of gapped topological phases is provided by the topological entanglement entropy (TEE). We study the finite size corrections to the TEE by focusing on systems with a Z(2) topological ordered state using density-matrix renormalization group and perturbative series expansions. We find that extrapolations of the TEE based on the Renyi entropies with a Renyi index of n >= 2 suffer from much larger finite size corrections than do extrapolations based on the von Neumann entropy. In particular, when the circumference of the cylinder is about ten times the correlation length, the TEE obtained using von Neumann entropy has an error of order 10(-3), while for Renyi entropies it can even exceed 40%. We discuss the relevance of these findings to previous and future searches for topological ordered phases, including quantum spin liquids.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Topological entanglement entropy of a Bose–Hubbard spin liquid
    Sergei V. Isakov
    Matthew B. Hastings
    Roger G. Melko
    Nature Physics, 2011, 7 : 772 - 775
  • [42] Spurious Topological Entanglement Entropy from Subsystem Symmetries
    Williamson, Dominic J.
    Dua, Arpit
    Cheng, Meng
    PHYSICAL REVIEW LETTERS, 2019, 122 (14)
  • [43] Topological Entanglement Entropy from the Holographic Partition Function
    Paul Fendley
    Matthew P. A. Fisher
    Chetan Nayak
    Journal of Statistical Physics, 2007, 126 : 1111 - 1144
  • [44] Topological Entanglement Entropy in Bilayer Quantum Hall Systems
    Chung, Myung-Hoon
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2014, 64 (08) : 1154 - 1160
  • [45] Deciphering the nonlocal entanglement entropy of fracton topological orders
    Shi, Bowen
    Lu, Yuan-Ming
    PHYSICAL REVIEW B, 2018, 97 (14)
  • [46] Topological entanglement entropy, ground state degeneracy and holography
    Parnachev, Andrei
    Poovuttikul, Napat
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (10):
  • [47] Boundary Topological Entanglement Entropy in Two and Three Dimensions
    Bridgeman, Jacob C.
    Brown, Benjamin J.
    Elman, Samuel J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 389 (02) : 1241 - 1276
  • [48] Experimental observation of classical analogy of topological entanglement entropy
    Chen, Tian
    Zhang, Shihao
    Zhang, Yi
    Liu, Yulong
    Kou, Su-Peng
    Sun, Houjun
    Zhang, Xiangdong
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [49] Topological entanglement entropy in bilayer quantum hall systems
    Myung-Hoon Chung
    Journal of the Korean Physical Society, 2014, 64 : 1154 - 1160
  • [50] Measuring Topological Entanglement Entropy Using Maxwell Relations
    Sankar, Sarath
    Sela, Eran
    Han, Cheolhee
    PHYSICAL REVIEW LETTERS, 2023, 131 (01)