Accuracy of Topological Entanglement Entropy on Finite Cylinders

被引:12
|
作者
Jiang, Hong-Chen [1 ]
Singh, Rajiv R. P. [2 ]
Balents, Leon [1 ]
机构
[1] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.111.107205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological phases are unique states of matter which support nonlocal excitations which behave as particles with fractional statistics. A universal characterization of gapped topological phases is provided by the topological entanglement entropy (TEE). We study the finite size corrections to the TEE by focusing on systems with a Z(2) topological ordered state using density-matrix renormalization group and perturbative series expansions. We find that extrapolations of the TEE based on the Renyi entropies with a Renyi index of n >= 2 suffer from much larger finite size corrections than do extrapolations based on the von Neumann entropy. In particular, when the circumference of the cylinder is about ten times the correlation length, the TEE obtained using von Neumann entropy has an error of order 10(-3), while for Renyi entropies it can even exceed 40%. We discuss the relevance of these findings to previous and future searches for topological ordered phases, including quantum spin liquids.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Entanglement entropy, quantum fluctuations, and thermal entropy in topological phases
    Yuting Hu
    Yidun Wan
    Journal of High Energy Physics, 2019
  • [22] ENTANGLEMENT ENTROPY AND STRONGLY CORRELATED TOPOLOGICAL MATTER
    Grover, Tarun
    MODERN PHYSICS LETTERS A, 2013, 28 (05)
  • [23] A note on entanglement entropy for topological interfaces in RCFTs
    Gutperle, Michael
    Miller, John D.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04):
  • [24] TOPOLOGICAL ENTANGLEMENT ENTROPY IN THE SECOND LANDAU LEVEL
    Friedman, B. A.
    Levine, G. C.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (24): : 4707 - 4715
  • [25] Topological entanglement entropy of fracton stabilizer codes
    Ma, Han
    Schmitz, A. T.
    Parameswaran, S. A.
    Hermele, Michael
    Nandkishore, Rahul M.
    PHYSICAL REVIEW B, 2018, 97 (12)
  • [26] Entanglement Entropy in the Ising Model with Topological Defects
    Roy, Ananda
    Saleur, Hubert
    PHYSICAL REVIEW LETTERS, 2022, 128 (09)
  • [27] A note on entanglement entropy for topological interfaces in RCFTs
    Michael Gutperle
    John D. Miller
    Journal of High Energy Physics, 2016
  • [28] Entanglement entropy of topological phases with multipole symmetry
    Ebisu, Hiromi
    PHYSICAL REVIEW B, 2024, 110 (04)
  • [29] Renormalization of entanglement entropy from topological terms
    Anastasiou, Giorgos
    Araya, Ignacio J.
    Olea, Rodrigo
    PHYSICAL REVIEW D, 2018, 97 (10)