Accuracy of Topological Entanglement Entropy on Finite Cylinders

被引:12
|
作者
Jiang, Hong-Chen [1 ]
Singh, Rajiv R. P. [2 ]
Balents, Leon [1 ]
机构
[1] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.111.107205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological phases are unique states of matter which support nonlocal excitations which behave as particles with fractional statistics. A universal characterization of gapped topological phases is provided by the topological entanglement entropy (TEE). We study the finite size corrections to the TEE by focusing on systems with a Z(2) topological ordered state using density-matrix renormalization group and perturbative series expansions. We find that extrapolations of the TEE based on the Renyi entropies with a Renyi index of n >= 2 suffer from much larger finite size corrections than do extrapolations based on the von Neumann entropy. In particular, when the circumference of the cylinder is about ten times the correlation length, the TEE obtained using von Neumann entropy has an error of order 10(-3), while for Renyi entropies it can even exceed 40%. We discuss the relevance of these findings to previous and future searches for topological ordered phases, including quantum spin liquids.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Entanglement spectrum and entropy in Floquet topological matter
    Zhou, Longwen
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [32] Universal Lower Bound on Topological Entanglement Entropy
    Kim I.H.
    Levin M.
    Lin T.-C.
    Ranard D.
    Shi B.
    Physical Review Letters, 2023, 131 (16)
  • [33] HOLOGRAPHIC ENTANGLEMENT ENTROPY AT FINITE TEMPERATURE
    Bah, Ibrahima
    Faraggi, Alberto
    Zayas, Leopoldo A. Pando
    Terrero-Escalante, Cesar A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (14): : 2703 - 2728
  • [34] Finite entanglement entropy of black holes
    Stefano Giaccari
    Leonardo Modesto
    Lesław Rachwał
    Yiwei Zhu
    The European Physical Journal C, 2018, 78
  • [35] Finite entanglement entropy of black holes
    Giaccari, Stefano
    Modesto, Leonardo
    Rachwal, Leslaw
    Zhu, Yiwei
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (06):
  • [36] Finite entanglement entropy in string theory
    Dabholkar, Atish
    Moitra, Upamanyu
    PHYSICAL REVIEW D, 2024, 109 (12)
  • [37] Entanglement, fidelity, and topological entropy in a quantum phase transition to topological order
    Hamma, A.
    Zhang, W.
    Haas, S.
    Lidar, D. A.
    PHYSICAL REVIEW B, 2008, 77 (15)
  • [38] Boundary Topological Entanglement Entropy in Two and Three Dimensions
    Jacob C. Bridgeman
    Benjamin J. Brown
    Samuel J. Elman
    Communications in Mathematical Physics, 2022, 389 : 1241 - 1276
  • [39] Experimental observation of classical analogy of topological entanglement entropy
    Tian Chen
    Shihao Zhang
    Yi Zhang
    Yulong Liu
    Su-Peng Kou
    Houjun Sun
    Xiangdong Zhang
    Nature Communications, 10
  • [40] Topological entanglement entropy from the holographic partition function
    Fendley, Paul
    Fisher, Matthew P. A.
    Nayak, Chetan
    JOURNAL OF STATISTICAL PHYSICS, 2007, 126 (06) : 1111 - 1144