SECOND CLASSICAL ZARISKI TOPOLOGY ON SECOND SPECTRUM OF LATTICE MODULES

被引:0
|
作者
Girase, Pradip [1 ]
Borkar, Vandeo [2 ]
Phadatare, Narayan [3 ]
机构
[1] KKM Coll, Dept Math, Manwath 431505, MS, India
[2] Yeshwant Mahavidyalaya, Dept Math, Nanded 431602, MS, India
[3] Savitribai Phule Pune Univ, Dept Math, Pune, Maharashtra, India
来源
KOREAN JOURNAL OF MATHEMATICS | 2020年 / 28卷 / 03期
关键词
Second element; second spectrum; second classical Zariski topology; second radical element; RADICAL ELEMENTS;
D O I
10.11568/kjm.2020.28.3.439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a lattice module over a C-lattice L. Let Spec(s)(M) be the collection of all second elements of M. In this paper, we consider a topology on Spec(s)(M), called the second classical Zariski topology as a generalization of concepts in modules and investigate the interplay between the algebraic properties of a lattice module M and the topological properties of Spec(s)(M). We investigate this topological space from the point of view of spectral spaces. We show that Spec(s)(M) is always T-0-space and each finite irreducible closed subset of Spec(s)(M) has a generic point.
引用
下载
收藏
页码:439 / 447
页数:9
相关论文
共 50 条
  • [21] On the second radical elements of lattice modules
    Phadatare, Narayan
    Kharat, Vilas
    TBILISI MATHEMATICAL JOURNAL, 2018, 11 (04): : 165 - 173
  • [22] Second Spectrum of Modules and Spectral Spaces
    Seçil Çeken
    Mustafa Alkan
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 153 - 169
  • [23] Second Spectrum of Modules and Spectral Spaces
    Ceken, Secil
    Alkan, Mustafa
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (01) : 153 - 169
  • [24] ON TWO PROBLEMS CONCERNING THE ZARISKI TOPOLOGY OF MODULES
    Ansari-Toroghy, H.
    Ovlyaee-Sarmazdeh, R.
    Pourmortazavi, S. S.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (04) : 941 - 948
  • [25] SOME PROPERTIES OF THE ZARISKI TOPOLOGY OF MULTIPLICATION MODULES
    Ameri, Reza
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (02): : 337 - 344
  • [26] Zariski quantization as second quantization
    Sato, Matsuo
    PHYSICAL REVIEW D, 2012, 85 (12):
  • [27] Zariski Topology of Prime Spectrum of a Module
    Sanh, N. V.
    Thao, L. P.
    Al-Mayahi, N. F. A.
    Shum, K. P.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ALGEBRA 2010: ADVANCES IN ALGEBRAIC STRUCTURES, 2012, : 461 - 477
  • [28] On the Maximal Spectrum of a Module and Zariski Topology
    Ansari-Toroghy, H.
    Keyvani, S.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (01) : 303 - 316
  • [29] On the Maximal Spectrum of a Module and Zariski Topology
    H. Ansari-Toroghy
    S. Keyvani
    Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 : 303 - 316
  • [30] The Zariski topology on the prime spectrum of a module
    Lu, CP
    HOUSTON JOURNAL OF MATHEMATICS, 1999, 25 (03): : 417 - 432