ON TWO PROBLEMS CONCERNING THE ZARISKI TOPOLOGY OF MODULES

被引:0
|
作者
Ansari-Toroghy, H. [1 ]
Ovlyaee-Sarmazdeh, R. [1 ]
Pourmortazavi, S. S. [1 ]
机构
[1] Univ Guilan, Fac Math Sci, Dept Pure Math, POB 41335-19141, Rasht, Iran
关键词
Prime spectrum; classical Zariski topology; spectral space; PRIME SPECTRUM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an associative ring and let M be a left R-module. Let Spec(R)(M) be the collection of all prime submodules of M (equipped with classical Zariski topology). It is conjectured that every irreducible closed subset of Spec(R)(M) has a generic point. In this article we give an affirmative answer to this conjecture and show that if M has a Noetherian spectrum, then Spec(R)(M) is a spectral space.
引用
收藏
页码:941 / 948
页数:8
相关论文
共 50 条
  • [1] A ZARISKI TOPOLOGY FOR MODULES
    Abuhlail, Jawad
    [J]. COMMUNICATIONS IN ALGEBRA, 2011, 39 (11) : 4163 - 4182
  • [2] Dual of Zariski Topology for Modules
    Ceken, Secil
    Alkan, Mustafa
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [3] A dual Zariski topology for modules
    Abuhlail, Jawad
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (03) : 457 - 467
  • [4] Zariski topology on lattice modules
    Ballal, Sachin
    Kharat, Vilas
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (04)
  • [5] MODULES AND THE SECOND CLASSICAL ZARISKI TOPOLOGY
    Ceken, Secil
    Alkan, Mustafa
    [J]. MATEMATICHE, 2018, 73 (01): : 161 - 177
  • [6] SOME PROPERTIES OF THE ZARISKI TOPOLOGY OF MULTIPLICATION MODULES
    Ameri, Reza
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (02): : 337 - 344
  • [7] CLASSICAL ZARISKI TOPOLOGY OF MODULES AND SPECTRAL SPACES I
    Behboodi, M.
    Haddadi, M. R.
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2008, 4 : 104 - 130
  • [8] Domination number in the Zariski topology-graph of modules
    Habibi, Shokoufeh
    Habibi, Zohreh
    Hezarjaribi, Masoomeh
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2022, 65 (03): : 329 - 340
  • [9] The Radical-Zariski Topology on the Radical Spectrum of Modules
    Moghimi, Hosein Fazaeli
    Harehdashti, Javad Bagheri
    [J]. FILOMAT, 2022, 36 (09) : 3037 - 3050
  • [10] CLASSICAL ZARISKI TOPOLOGY OF MODULES AND SPECTRAL SPACES II
    Behboodi, M.
    Haddadi, M. R.
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2008, 4 : 131 - 148