Second Spectrum of Modules and Spectral Spaces

被引:0
|
作者
Seçil Çeken
Mustafa Alkan
机构
[1] İstanbul Aydın University,Department of Mathematics
[2] Akdeniz University,Computer
关键词
Second submodule; Cotop module; Dual Zariski topology; Spectral space; 13C13; 13C05; 13C99;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring with identity and Specs(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Spec}^{s}(M)$$\end{document} denote the set all second submodules of an R-module M. In this paper, we investigate various properties of Specs(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Spec}^{s}(M)$$\end{document} with respect to different topologies. We investigate the dual Zariski topology from the point of view of separation axioms, spectral spaces and combinatorial dimension. We establish conditions for Specs(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Spec}^{s}(M)$$\end{document} to be a spectral space with respect to quasi-Zariski topology and second classical Zariski topology. We also present some conditions under which a module is cotop.
引用
收藏
页码:153 / 169
页数:16
相关论文
共 50 条
  • [1] Second Spectrum of Modules and Spectral Spaces
    Ceken, Secil
    Alkan, Mustafa
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (01) : 153 - 169
  • [2] MODULES AND SPECTRAL SPACES
    Abbasi, A.
    Hassanzadeh-Lelekaami, D.
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (11) : 4111 - 4129
  • [3] TORSION MODULES AND SPECTRAL SPACES
    Roshan-Shekalgourabi, Hajar
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (01): : 95 - 103
  • [4] SECOND CLASSICAL ZARISKI TOPOLOGY ON SECOND SPECTRUM OF LATTICE MODULES
    Girase, Pradip
    Borkar, Vandeo
    Phadatare, Narayan
    KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (03): : 439 - 447
  • [5] Graded modules with Noetherian graded second spectrum
    Salam, Saif
    Al-Zoubi, Khaldoun
    AIMS MATHEMATICS, 2023, 8 (03): : 6626 - 6641
  • [6] CLASSICAL ZARISKI TOPOLOGY OF MODULES AND SPECTRAL SPACES I
    Behboodi, M.
    Haddadi, M. R.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2008, 4 : 104 - 130
  • [7] CLASSICAL ZARISKI TOPOLOGY OF MODULES AND SPECTRAL SPACES II
    Behboodi, M.
    Haddadi, M. R.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2008, 4 : 131 - 148
  • [8] Zariski spaces of modules
    Nikseresht, A.
    Azizi, A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (07) : 1187 - 1194
  • [9] Sequence Spaces and Spectrum of q-Difference Operator of Second Order
    Alotaibi, Abdullah
    Yaying, Taja
    Mohiuddine, Syed Abdul
    SYMMETRY-BASEL, 2022, 14 (06):
  • [10] Φ-MODULES AND COEFFICIENT SPACES
    Pappas, G.
    Rapoport, M.
    MOSCOW MATHEMATICAL JOURNAL, 2009, 9 (03) : 625 - 663